Answer:
Decreases the time period of revolution
Explanation:
The time period of Cygnus X-1 orbiting a massive star is 5.6 days.
The orbital velocity of a planet is given by the formula,
v = √[GM/(R + h)]
In the case of rotational motion, v = (R +h)ω
ω = √[GM/(R + h)] /(R +h)
Where 'ω' is the angular velocity of the planet
The time period of rotational motion is,
T = 2π/ω
By substitution,
<em>T = 2π(R +h)√[(R + h)/GM] </em>
Hence, from the above equation, if the mass of the star is greater, the gravitational force between them is greater. This would reduce the time period of revolution of the planet.
Explanation:
Single slit diffraction
Diffraction is the phenomenon of spreading out of waves as they pass through an aperture or around objects. Diffraction occurs when the size of the aperture or obstacle is of the same order of magnitude as the wavelength of the incident wave. For very small aperture sizes, the vast majority of the wave is blocked. in case of large apertures the wave passes by or through the obstacle without any significant diffraction.
I think 36m/12s because 3×12 =36
Answer:
A)take motion and induce a current
Explanation:
i hope it will be helpful