Since everything in the circuit is in series .. .
-- The total resistance is (3 + 2) = 5 ohms.
-- The voltage across the 3-ohm resistor is 3/5 of the total voltage.
-- The voltage across the 2-ohm resistor is 2/5 of the total voltage.
(2/5) of (9 volts) = 18/5 = 3.6 volts .
Here is the energy that is left after the quantity of energy is transformed: 750 j of electrical energy is changed into 400 j of kinetic or mechanical energy, which is then turned into 0.32 j of efficient energy.
To run the fan, electrical energy is utilized.
Here, under the specified circumstances, 750 J of electrical energy is utilized to operate the fan, which is transformed into 400 J of kinetic energy. As a result, 350 J of energy is wasted due to various frictional and resistive losses.
Therefore, we may conclude that only 400 J of the 750 J available energy is used to power the fan, with the remaining energy being wasted as a result of friction.
Additionally, we can state that this fan's effectiveness will be
n = Useful ÷ Total
n = 400 ÷ 750
n = 8 ÷ 25
n = 0.32
Learn more about energy at
brainly.com/question/15915007?referrer=searchResults
#SPJ4
Answer:
A) Out of the page.
Explanation:
Right-hand rule points the direction of the magnetic field at any point.
<u>Top wire</u>: Current is to the left. Point your thumb to the left and curl your other fingers around the wire. The tips of the four fingers points the direction of the field at that point. In this case, out of the page.
<u>Bottom wire</u>: Current is to the right. Point your thumb to the right and curl your other fingers around the wire. The tips of the four finger points out of the page again.
So, the total field produced by both wires is directed out of the page.
Another method to figure out the direction is the mathematical method.
Use the B-field formula:

The cross product between the direction of the current and the target position gives the direction of the B-field. If the left is -x direction and downwards is the -y direction, then
for the top wire.
for the bottom wire.
<span>here u go!
fiber-Optics
Mirrors
Sonar
Radar
Study of seismic waves </span>