Answer:
The initial velocity is 38.46 m/s.
Explanation:
The horizontal distance travel by the tennis ball = 13 m
The height at which the tennis ball dropped = 56 cm
Now calculate the initial speed of tennis ball.
The vertical velocity is zero.
Below is the calculation. Here, first convert centimetre into kilometre. So, height at which ball dropped is 0.56 km.
I’m assuming we’re suppose to get some kind of graph but, Instantaneous speed is the speed that is happening right now. Like driving a car at 15k/h. The instantaneous speed of the car 15k/h. On the graph, at 5s. Wherever the line is, will tell you what the speed is.
Gravity affects weight of an object
Its weight reduces as it moves away from the center as gravity is strongest near the core and reduces as you move away
Hope this helps C:
To solve this problem we will apply the laws of Mersenne. Mersenne's laws are laws describing the frequency of oscillation of a stretched string or monochord, useful in musical tuning and musical instrument construction. This law tells us that the velocity in a string is directly proportional to the root of the applied tension, and inversely proportional to the root of the linear density, that is,
Here,
v = Velocity
= Linear density (Mass per unit length)
T = Tension
Rearranging to find the Period we have that
As we know that speed is equivalent to displacement in a unit of time, we will have to
Therefore the tension is 5.54N