Answer:
the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Explanation:
Given:
Diameter of the pipe = 100mm = 0.1m
Contraction ratio = 0.5
thus, diameter at the throat of venturimeter = 0.5×0.1m = 0.05m
The formula for discharge through a venturimeter is given as:

Where,
is the coefficient of discharge = 0.97 (given)
A₁ = Area of the pipe
A₁ = 
A₂ = Area at the throat
A₂ = 
g = acceleration due to gravity = 9.8m/s²
Now,
The gauge pressure at throat = Absolute pressure - The atmospheric pressure
⇒The gauge pressure at throat = 2 - 10.3 = -8.3 m (Atmosphric pressure = 10.3 m of water)
Thus, the pressure difference at the throat and the pipe = 3- (-8.3) = 11.3m
Substituting the values in the discharge formula we get
or

or
Q = 29.28 ×10⁻³ m³/s
Hence, the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Answer:
The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state toward a lower utility state. The physiological system may return toward the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system's resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective.
Explanation:
Evidence: Data gathered
Experiment: Looking through a telescope
Observations: Testing what happens
Reasoning: Thinking a problem through
I believe that these should be correct.
Hoping you pass!
<h2>Greetings!</h2>
To find speed, you need to remember the formula:
Speed = distance ÷ time
So plug the given values in:
500 ÷ 30 = 16.66
<h3>So the speed is 16.66m/s (metres per second)</h3>
<h2>Hope this helps!</h2>
Answer:
5500000 millimeters
Explanation:
1 kilometre= 1000 meter
5.5 km=5.5 * 1000
=5500
Now,
1 metre = 1000 millimetres
5500 metre=1000*5500
=5500000 mm