Answer:
Explanation:
No entiendo lo que quieres decir con eso
Answer:
Option C. 30 m
Explanation:
From the graph given in the question above,
At t = 1 s,
The displacement of the car is 10 m
At t = 4 s
The displacement of the car is 40 m
Thus, we can simply calculate the displacement of the car between t = 1 and t = 4 by calculating the difference in the displacement at the various time. This is illustrated below:
Displacement at t = 1 s (d1) = 10 m
Displacement at t= 4 s (d2) = 40
Displacement between t = 1 and t = 4 (ΔD) =?
ΔD = d2 – d1
ΔD = 40 – 10
ΔD = 30 m.
Therefore, the displacement of the car between t = 1 and t = 4 is 30 m.
Answer:
False
Explanation:
The torque exerted by a force is given by:

where
F is the magnitude of the force
d is the distance between the point of application of the force and the pivot
is the angle between the directions of F and d
We see that the magnitude of the torque depends on 3 factors. In this problem, we have 2 forces of equal magnitude (so, equal F). Moreover, one of the forces (let's call it force 1) acts farther from the pivot than force 2, so we have

However, this does not mean that force 1 produces a greater torque. In fact, it also depends on the angle at which the force is applied. For instance, if the first force is applied parallel to d, then we have

and the torque produced by this force would be zero.
So, the statement is false.
Accuracy and power are the only things that matter in dodge ball. If you are not accurate, then your target does not get hit.
Kinetic energy. the electricity makes the fan move. it uses potential energy and converts it into kinetic energy from the electricity.