<h2>Astronaut travels to different planets - Option 4 </h2>
If an astronaut travels to different planets, none of the planets will the astronaut’s weight be the same as on Earth. On jupiter, weight will be more than the weight on earth. For instance if an astronaut has 100kg on earth then he will have 252 kg on jupiter.
On Mars, weight will be less than the weight on the earth. For instance, if an astronaut has 68 kg on earth then he will has 26 kg on mars. On Mercury, weight of an astronaut will be less than the weight on earth. Example if he has 68 kg on earth then he will have 25.7kg on mercury.
Hence, none of these planets the weight of astronaut will be same as on earth.
Answer:
7.50 m/s^2
Explanation:
The period of a pendulum is given by:
(1)
where
L = 0.600 m is the length of the pendulum
g = ? is the acceleration due to gravity
In this problem, we can find the period T. In fact, the frequency is equal to the number of oscillations per second, so:

And the period is the reciprocal of the frequency:

And by using this into eq.(1), we can find the value of g:

Thermal energy quantifies the amount of heat present in the body and is calculated through the equation,
H = mcpdT
where H is the heat, m is the mass, cp is the specific heat, and dT is the temperature difference. If all things are constant, and the thermal energy is halved then, dT should also be reduced to half.
Answer:
that is going at a constant rate
Explanation:
The complete cycle of phases lasts 29.531 days.
From New Moon to Full Moon is half of that . . . 14.765 days,
which is very close to 2 weeks.