The planetary temperature energy balance is obtained by radiating back the absorbed radiation energy from outer-space, by the planet and thus acquiring thermal equilibrium.
What is the process of attaining thermal equilibrium by Earth?
The Stefan-Boltzmann law states that the more the temperature a planet has, the more it will radiate out to reach thermal equilibrium.
We know that outer space contains large masses of radiative energy freely distributed in its vast expanse. A small fraction of this energy is absorbed by the Earth through the atmosphere, surface land, clouds etc.
Now, radiative balance is achieved when a planet's surface continuously warms up until it reaches its peak at which point the same amount of absorbed energy can then be radiated back to space. The relative amount of energy radiated back by a planet is dependent upon the size of the planet.
A colder planet relatively absorbs lower amount of radiation energy from space. In some time, as the planet heats up enough, the energy is radiated back to the space attaining thermal equilibrium.
Learn more about Stefan-Boltzmann law here:
<u>brainly.com/question/14919749</u>
#SPJ4
I really don’t know but I think it’s D
Answer:
An X-ray is used to take pictures of your bones. The waves that are used are known as radiation waves.
A watering can is used to hold a water that we will use to water the plants. The water has both mass and volume. Two watering cans are most often different by the volume they contain.
Many various units for volume are used but most often used unit is liter. In a metric system basic units are those such as meter, kilogram and liter while in imperial system units used are those such as foote, inch, pound and gallon.
Unit for volume in metric system is cubic meter. It is equal to a volume of a cube whose all sides measure 1m. This is equal to 1000L. For watering cans that contain several liters units used is decimeter cubed. 1dm^3 = 1L
Answer:

Explanation:
Given:
- mass of solid disk,

- radius of disk,

- force of push applied to disk,

- distance of application of force from the center,

<em>For the condition of no slip the force of static friction must be greater than the applied force so that there is no skidding between the contact surfaces at the contact point.</em>

where:
= static frictional force



