Explanation:
Hey there!!
Let's simply work with it.
Here,
load = 1200N
Effort = 200N
Load distance = 15cm
We have,
According to the principle of lever.
L×LD = E×ED.
1200×15 = 200× ED.
18000 = 200ED.

Therefore, Effort Distance = 90cm.
<em><u>Hope it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
a current will be induced.
Explanation:
Answer:
The moment of inertia about the rotation axis is 117.45 kg-m²
Explanation:
Given that,
Mass of one child = 16 kg
Mass of second child = 24 kg
Suppose a playground toy has two seats, each 6.1 kg, attached to very light rods of length r = 1.5 m.
We need to calculate the moment of inertia
Using formula of moment of inertia


m = mass of seat
m₁ =mass of one child
m₂ = mass of second child
r = radius of rod
Put the value into the formula


Hence, The moment of inertia about the rotation axis is 117.45 kg-m²
Explanation:
<u>Using Equations of Motion</u> :
(1) v = u + at
24 = 6.5 + a * 210
<u>a (Acceleration) = 0.083 m/s^2 </u>
<u>(</u><u>2</u><u>)</u><u> </u> v^2 = u^2 + 2aS
S = 576 - 42.25 / 0.166
<u>S (Distance travelled) = 3215.3 m </u>
(Option A seems a typo since the answer is 3215.3 m)
Answer:

Explanation:
As we know that the relation between temperature and pressure is a linear relation
so we have

here we know that




now we will have


now if P = 0
then we will have

