Answer:
A λ = 97.23 nm
, B) λ = 486.2 nm
, C) λ = 53326 nm
Explanation:
With that problem let's use the Bohr model equation for the hydrogen atom
= -k e² /2a₀ 1/n²
For a transition between two states we have
-
= -k e² /2a₀ (1/
² - 1 / n₀²)
Now this energy is given by the Planck equation
E = h f
And the speed of light is
c = λ f
Let's replace
h c / λ = - k e² /2a₀ (1 /
² - 1 / no₀²)
1 / λ = - k e² /2a₀ hc (1 /
² -1 / n₀²)
Where the constants are the Rydberg constant
= 1.097 10⁷ m⁻¹
1 / λ =
(1 / n₀² - 1 / nf²)
Now we can substitute the given values
Part A
Initial state n₀ = 1 to the final state
= 4
1 / λ = 1.097 10⁷ (1/1 - 1/4²)
1 / λ = 1.0284 10⁷ m⁻¹
λ = 9.723 10⁻⁸ m
We reduce to nm
λ = 9.723 10⁻⁸ m (10⁹ nm / 1m)
λ = 97.23 nm
Part B
Initial state n₀ = 2 final state
= 4
1 / λ = 1.097 10⁷ (1/2² - 1/4²)
1 / λ = 0.2056 10⁻⁷ m
λ = 486.2 nm
Part C
Initial state n₀ = 3
1 / λ = 1,097 10⁷ (1/3² - 1/4²)
1 / λ = 5.3326 10⁵ m⁻¹
λ = 5.3326 10-5 m
λ = 53326 nm
We must know that the gravity acceleration on Jupyter is g = 24.79 m/s² , on the Earth g = 9.8 m/s² and on the moon 1.62 m/s².
The weigh of an object is given by:
P = mg
Solving for m:
m = P/g
We see that for the same weight, if gravity is less, then the amount of mass is greater, because they are inversely proportional. So we conclude that the answer is:
<h2>a 3-N bowl of ice cream on the moon </h2>
Answer:
T = 0.71 seconds
Explanation:
Given data:
mass m = 1Kg, spring constant K = 78 N/m, time period of oscillation T = 0.71 seconds.
We have to calculate time period when this same spring-mass system oscillates vertically.
As we know

This relation of time period is true under every orientation of the spring-mass system, whether horizontal, vertical, angled or inclined. Therefore, time period of the same spring-mass system oscillating vertically too remains the same.
Therefore, T = 0.71 seconds
Answer:
kinetic energy, form of energy that an object or a particle has by reason of its motion.
potential energy, stored energy that depends upon the relative position of various parts of a system
Answer:
Option 2. and 3.
Explanation:
Anode heel effect or simply heel effect is observed in X-ray tubes.
It is the change in the intensity of the emitted X-rays from the anode and this intensity is direction dependent and depends on the direction of the emitted X-rays along the axis of anode-cathode.
This effect results from the absorption of X-rays prior to leaving the anode, their production source.
The absorption of photons is more in the anode heel than the toe of the anode which results in the anode heel effect.