Answer:
the ball's velocity was approximately 0.66 m/s
Explanation:
Recall that we can study the motion of the baseball rolling off the table in vertical component and horizontal component separately.
Since the velocity at which the ball was rolling is entirely in the horizontal direction, it doesn't affect the vertical motion that can therefore be studied as a free fall, where only the constant acceleration of gravity is affecting the vertical movement.
Then, considering that the ball, as it falls covers a vertical distance of 0.7 meters to the ground, we can set the equation of motion for this, and estimate the time the ball was in the air:
0.7 = (1/2) g t^2
solve for t:
t^2 = 1.4 / g
t = 0.3779 sec
which we can round to about 0.38 seconds
No we use this time in the horizontal motion, which is only determined by the ball's initial velocity (vi) as it takes off:
horizontal distance covered = vi * t
0.25 = vi * (0.38)
solve for vi:
vi = 0.25/0.38 m/s
vi = 0.65798 m/s
Then the ball's velocity was approximately 0.66 m/s
The name carbohydrate means "watered carbon" or carbon with attached water molecules. Many carbohydrates have empirical formuli which would imply about equal numbers of carbon and water molecules. For example, the glucose formula C6H12O6 suggests six carbon atoms and six water molecules.
Answer:
169.74 N
Explanation:
Given,
Mass of the girl = 30 Kg
angle of the rope with vertical, θ = 30°
equating the vertical component of the tension
vertical component of the tension is equal to the weight of the girl.
T cos θ = m g
T cos 30° = 30 x 9.8
T = 339.48 N
Tension on the two ropes is equal to 339.48 N
Tension in each of the rope = T/2
= 339.48/2 = 169.74 N
Hence, the tension in each of the rope is equal to 169.74 N
The amount of movement, linear momentum, momentum or momentum is a physical quantity derived from a vector type that describes the movement of a body in any mechanical theory. In classical mechanics, the amount of movement is defined as the product of body mass and its velocity at a given time.
p= mv
Where,
m = mass
v = Velocity
Our values are given as,


Replacing we have that,


Therefore the momentum is 
The crowbar is placed under a small edge under the top of the box. The crowbar will send the box lid flying from the opposite direction that the crowbar is placed. Please give Brainlest if you understand.