This question is solved using an available similar problem as data provided for the forces was not given.
Repeat the same steps outlined for your problem.
Regards.
Answer:
F = 1.598 KN , Q = 90 degree (+ y-axis)
Explanation:
Sum of Forces in x-direction to the left (+)
2 cos (30) + 3cos (60) + F*cos (Q) = F_a ..... 1
Sum of Forces in y-direction to the up (+)
2 sin (30) + F*sin (Q) - 3 sin (60) ...... 2
Using Eq 2 and solve:
F*sin (Q) = 1.598 KN
F_min when sin (Q) is max, max possible value of sin(Q) = 1 @ Q = 90 degrees.
Hence,
F_min = 1.598 KN
Using Eq 1 @ Q = 90 degrees and F = 1.598 KN:
F_a = 2 cos (30) + 3cos (60) = 3.2 KN
Nimbostratus clouds cause precipitation
The Audi covers 88 in one hour.
22 is one quarter of 88, so it takes one quarter of one hour. That's 15 minutes.
Note:. The answer would be the same for any other brand of car, motorcycle, airplane etc.
Answer:
Because molecules are to small for us people to see with the bare eye, unless you use a telescope.
Explanation:
Answer:
The general equation of movement in fluids is obtained from the application, at fluid volumes, of the principle of conservation of the amount of linear movement. This principle establishes that the variation over time of the amount of linear movement of a fluid volume is equal to that resulting from all forces (of volume and surface) acting on it. Expressed in This equation is called the Navier-Stokes equation.
The equation is shown in the attached file
Explanation:
The derivative of velocity with respect to time determines the change in the velocity of a particle of the fluid as it moves in space. It also includes convective acceleration, expressed by a nonlinear term that comes from convective inertia forces). With this equation, Stokes studied the motion of an infinite incompressible viscous fluid at rest at infinity, and in which a solid sphere of radius r makes a rectilinear and uniform translational motion of velocity v. It assumes that there are no external forces and that the movement of the fluid relative to a reference system on the sphere is stationary. Stokes' approach consists in neglecting the nonlinear term (associated with inertial forces due to convective acceleration).