1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MArishka [77]
3 years ago
15

Consider an arbitrary ellipse x 2 a 2 + y 2 b 2 = 1. (Assume a, b > 0.) (a) Find a parametrization of the ellipse using the d

omain t ∈ [0, 2π] such that the initial point and terminal point are both (0, b) and the ellipse is traversed exactly once in the counterclockwise direction (except that one point is hit twice). On a sketch of the ellipse, label the "compass points" of the ellipse with their t-values.

Mathematics
2 answers:
uysha [10]3 years ago
7 0

Answer:

α(t) = (-a*Sin(t), b*Cos (t))    where t ∈ [0, 2π]

Step-by-step explanation:

Given an arbitrary ellipse (x²/a²) + (y²/b²) = 1       (a, b > 0)

The parametrization can be as follows

x = -a*Sin(t)

y = b*Cos (t)

then

α(t) = (-a*Sin(t), b*Cos (t))    where t ∈ [0, 2π]

If  t = 0

α(0) = (-a*Sin(0), b*Cos (0)) = (0, b)

If  t = π/2

α(π/2) = (-a*Sin(π/2), b*Cos (π/2)) = (-a, 0)

If  t = π

α(π) = (-a*Sin(π), b*Cos (π)) = (0, -b)

If  t = 3π/2

α(3π/2) = (-a*Sin(3π/2), b*Cos (3π/2)) = (a, 0)

If  t = 2π

α(2π) = (-a*Sin(2π), b*Cos (2π)) = (0, b)

We can see the sketch in the pic.

stira [4]3 years ago
3 0

Answer:

Check below

Step-by-step explanation:

1) Firstly let's rewrite the equation for the sake of clarity, bearing in mind (a, b >0):

\frac{x^{2}}{a^2}+\frac{y^2}{b^2}=1

a) To find a parametrization, to begin with we need to keep in mind this relations:

I)The general formula of the ellipse:

\\\frac{(x-p)^2}{a^2}+\frac{(y-q)^2}{b^2}=1

II) Parametrization:

\left\{\begin{matrix}x(t)=acos(t)+p\\ y(t)=bsin(t)+p\end{matrix}\right.t\in[0,2\pi]

So, for that ellipse arbitrarily chosen we have:

p=0, q=0. So plugging in we have:

\left\{\begin{matrix}x(t)=acos(t)\\ y(t)=bsin(t)\end{matrix}\right.\:\:t\in[0,2\pi]\\

For this exercise, suppose a ≠ b, and both >0

Since the Foci  have the size of the minor axis over the longer one then

F_{1}=(-b,0), and \:F_{2}=(b,0)\\

T values for F1, and F2

y=-bsin(t)\\\frac{y}{sin(t)}=-b\frac{sin(t)}{sin(t)}\Rightarrow   \\\frac{y}{sin(t)}=-b\\\\\frac{1}{sin(t)}y=-b\\ \frac{1}{sin(t)}=\frac{-b}{y} \\F2 \\y=bsin(t)\\\frac{y}{sin(t)}=b\frac{sin(t)}{sin(t)}\Rightarrow   \\\frac{y}{sin(t)}=-b\\\\\frac{1}{sin(t)}y=b\\ \frac{1}{sin(t)}=\frac{b}{y} \\

You might be interested in
What would it be for this?
amm1812
It would be 41 because its m math
3 0
3 years ago
2.6.5 A plant physiologist grew birch seedlings in the green-house and measured the ATP content of their roots. (See Example 1.1
Ilya [14]

Answer:

(a)\ \bar x = 1.19

(b)\ \sigma_x = 0.18

Step-by-step explanation:

Given

n = 4

x: 1.45\ 1.19\ 1.05\ 1.07

Solving (a): The mean

This is calculated as:

\bar x = \frac{\sum x}{n}

So, we have:

\bar x = \frac{1.45 + 1.19 + 1.05 + 1.07}{4}

\bar x = \frac{4.76}{4}

\bar x = 1.19

Solving (b): The standard deviation

This is calculated as:

\sigma_x = \sqrt{\frac{\sum(x - \bar x)^2}{n - 1}}

So, we have:

\sigma_x = \sqrt{\frac{(1.45 -1.19)^2 + (1.19 -1.19)^2 + (1.05 -1.19)^2 + (1.07 -1.19)^2}{4 - 1}}

\sigma_x = \sqrt{\frac{(0.1016}{3}}

\sigma_x = \sqrt{0.033867}

\sigma_x = 0.18

4 0
3 years ago
Help me please I literally don’t understand any of this. I know it’s easy too.
Ber [7]

Holigina, this is the solution:

Let's recall that √x = x ^(1/2)

Therefore,

√x√x = x ^(1/2 + 1/2) = x^1 (We sum the exponents of the same base)

The correct answer is C. 1

5 0
1 year ago
Use the following data and graph the best-fit quadratic curve. What is a good approximation for the value of c?
siniylev [52]

Answer:

Бардык белгилүү авиация мыйзамдарына ылайык, аары учуу мүмкүнчүлүгү жок.

Step-by-step explanation:

Бардык белгилүү авиация мыйзамдарына ылайык, аары учуу мүмкүнчүлүгү жок. Канаттары өтө эле кичинекей, семиз денесин чече албайт. Албетте, аары баары бир учат. Себеби аарылар адам мүмкүн эмес деп эсептеген нерсеге маани бербейт.

4 0
3 years ago
Read 2 more answers
Find the lateral and surface area for the pyramid with a regular base. Where necessary, round to the nearest tenth.
Gwar [14]

Answer:

Lateral area -288. Surface area-96

Step-by-step explanation: teacher told me

4 0
3 years ago
Other questions:
  • 24.51 kg round this to 1 decimal
    5·1 answer
  • What rule changes the input numbers to output numbers?
    9·1 answer
  • Thanks, & yes how did you get that
    13·1 answer
  • What percent of the muffins were carrots
    14·1 answer
  • The grassy area of a playground has a side length of x and a side of width of x + 3 what is the area of the playground?
    5·2 answers
  • Die m-my dinosaur nuggys are gone ​
    11·1 answer
  • What does 5 x 5/6 equal?
    9·2 answers
  • 3.9 in fration form in fration
    7·2 answers
  • Round your answer to the nearest hundredth. Please help!!
    6·2 answers
  • Please help!!!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!