A - the objects are too small
GRAVITATIONAL FORCE IS EXPERIENCED BY ALL OBJECTS IN THE UNIVERSE ALL THE TIME. BUT THE ORDINARY OBJECTS YOU SEE EVERY DAY HAVE MASSES SO SMALL THAT THEIR ATTRACTION TOWARD EACH OTHER IS HARD TO DETECT. -https://www.ftsd.org/cms/lib6/MT01001165/Centricity/ModuleInstance/630/CHAPTER_2_NOTES_FOR_EIGHTH_GRADE_PHYSICAL_SCIENCE.pdf
The gravitational pull of the Sun the interstellar dust attracting heat away from the protosun the process of nuclear fusion the nebular cloud condensing.
Explanation:
It is given that,
Frequency of the laser light, 
Time,
(a) Let
is the wavelength of this light. It can be calculated as :



or

(b) Let n is the number of the wavelengths in one pulse. It can be calculated as :


n = 13440
Hence, this is the required solution.
Explanation:
It is given that,
Force, 
Position vector, 
(a) The torque on the particle about the origin is given by :

(b) To find the angle between r and F use dot product formula as :

Hence, this is the required solution.
We will apply the conservation of linear momentum to answer this question.
Whenever there is an interaction between any number of objects, the total momentum before is the same as the total momentum after. For simplicity's sake we mostly use this equation to keep track of the momenta of two objects before and after a collision:
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
Note that v₁ and v₁' is the velocity of m₁ before and after the collision.
Let's choose m₁ and v₁ to represent the bullet's mass and velocity.
m₂ and v₂ represents the wood block's mass and velocity.
The bullet and wood will stick together after the collision, so their final velocities will be the same. v₁' = v₂'. We can simplify the equation by replacing these terms with a single term v'
m₁v₁ + m₂v₂ = m₁v' + m₂v'
m₁v₁ + m₂v₂ = (m₁+m₂)v'
Let's assume the wood block is initially at rest, so v₂ is 0. We can use this to further simplify the equation.
m₁v₁ = (m₁+m₂)v'
Here are the given values:
m₁ = 0.005kg
v₁ = 500m/s
m₂ = 5kg
Plug in the values and solve for v'
0.005×500 = (0.005+5)v'
v' = 0.4995m/s
v' ≅ 0.5m/s