1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
3 years ago
10

Two 20.0 g ice cubes at − 20.0 ∘ C are placed into 285 g of water at 25.0 ∘ C. Assuming no energy is transferred to or from the

surroundings, calculate the final temperature, T f , of the water after all the ice melts.
Physics
1 answer:
Lelechka [254]3 years ago
7 0

Answer:

Ft = 17.48°C

Explanation:

Ft is the final temperature. However, ice absorbs heat during two process of melting and cooling and as such, there is no loss of heat to or from the surrounding hence by conservation of energy.

Therefore,

Heat absorbed by water of 20g = heat rejected by water of 265g.

So; M(ice)[C(ice) [(ΔT) + LH(ice) + C(water)(ΔT)] = C(water) M(water) (ΔT)

So, 20[(2.108) [0 - (-20)] + 333.5 + 4.187(Ft - 0)]] = (285)(4.187) (25 - Ft)

To get;

7513 + 83.74 Ft = 29832.4 - 1193.3 Ft

So factorizing, we get;

83.74 Ft + 1193.3 Ft = 29832.4 - 7513

So; 1277.04 Ft = 22319.4

So; Ft = 22319.4/1277.04 = 17.48°C

You might be interested in
What is the transfer of energy <br> by electromagnetic waves
Ann [662]
The transfer of energy by electromagnetic waves is called electromagnetic radiation
3 0
3 years ago
Read 2 more answers
An offshore oil well is 2 kilometers off the coast. The refinery is 4 kilometers down the coast. Laying pipe in the ocean is twi
shusha [124]

Answer:

Rectangular path

Solution:

As per the question:

Length, a = 4 km

Height, h = 2 km

In order to minimize the cost let us denote the side of the square bottom be 'a'

Thus the area of the bottom of the square, A = a^{2}

Let the height of the bin be 'h'

Therefore the total area, A_{t} = 4ah

The cost is:

C = 2sh

Volume of the box, V = a^{2}h = 4^{2}\times 2 = 128            (1)

Total cost, C_{t} = 2a^{2} + 2ah            (2)

From eqn (1):

h = \frac{128}{a^{2}}

Using the above value in eqn (1):

C(a) = 2a^{2} + 2a\frac{128}{a^{2}} = 2a^{2} + \frac{256}{a}

C(a) = 2a^{2} + \frac{256}{a}

Differentiating the above eqn w.r.t 'a':

C'(a) = 4a - \frac{256}{a^{2}} = \frac{4a^{3} - 256}{a^{2}}

For the required solution equating the above eqn to zero:

\frac{4a^{3} - 256}{a^{2}} = 0

\frac{4a^{3} - 256}{a^{2}} = 0

a = 4

Also

h = \frac{128}{4^{2}} = 8

The path in order to minimize the cost must be a rectangle.

8 0
3 years ago
A student is performing a double-slit experiment to determine the wavelength of a light source. She has measured the distance be
Harman [31]

Answer:

lights need elewctricity

Explanation:

4 0
3 years ago
Some one help my science homework is due tomorrow and I'm so stuck with question 8-9, and 11-12
yuradex [85]
Off the top of my head, I only know 9 and 11, so I'll answer those two.

9) A heterotroph is an organism that relies on other organisms for food/energy
    An autotroph can produce its own food from inorganic compounds (light)

11) Vascular plants have specialized tubes for transporting nutrients
      Nonvascular plants do not have such tubes and are simpler
5 0
3 years ago
4) A football player starts at the 40-yard line, and runs to the 25-yard line in 2 seconds.
VMariaS [17]

Answer:

(a). Their speed during that run is 10 m/s.

(b). Their velocity is 6.86 m/s

(c). The final position is at 8.91 m.

Explanation:

Given that,

A football player starts at the 40-yard line, and runs to the 25-yard line in 2 seconds.

Suppose, the distance between 40 yard line and 25 yard line is 20 yard.

(a). We need to calculate their speed during that run

Using formula of speed

v=\dfrac{d}{t}

Where. d = distance

t = time

Put the value into the formula

v=\dfrac{18.288}{2}

v=10\ m/sduring that run

(b). We need to calculate their velocity

Using formula of speed

v=\dfrac{\Delta d}{\Delta t}

Put the value into the formula

v=\dfrac{22.86-36.58}{2}

v=-6.86\ m/s

Negative sign shows the direction of motion.

(c). If they kept running at that velocity for another 1.3 seconds,

We need to calculate the final position

Using formula of position

d=vt

Put the value into the formula

d=6.86\times1.3

d=8.91\ m

Hence, (a). Their speed during that run is 10 m/s.

(b). Their velocity is 6.86 m/s

(c). The final position is at 8.91 m.

8 0
3 years ago
Other questions:
  • The three forces acting on a hot-air balloon that is moving vertically are its weight, the force due to air resistance and the u
    5·1 answer
  • A sharp edged orifice with a 60 mm diameter opening in the vertical side of a large tank discharges under a head of 6 m. If the
    8·1 answer
  • Peter notices that his eight-year-old daughter frequently mentions the unusual habits of a new boy, who is from a different cult
    6·1 answer
  • Select all of the answers that apply.
    11·2 answers
  • If you had a positive 8 score on the sit-an-reach test you
    13·2 answers
  • Altitude is the angle measured above ____.<br><br> North Pole<br> horizon<br> equator<br> zenith
    15·2 answers
  • The helicopter in the drawing is moving horizontally to the right at a constant velocity. The weight of the helicopter is W=4250
    15·1 answer
  • You are presented with several wires made of the same conducting material. The radius and drift speed are given for each wire in
    11·1 answer
  • An elevator car, with a mass of 450 kg is suspended by a single cable. At time = 0s, the elevator car is raised upward. The tens
    15·1 answer
  • While being thrown, a net force of 132 N acts on a baseball (mass = 140g) for a period of 4.5 x 10^-2 sec. what is the magnitude
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!