Answer:
energy is converted into mass
Explanation:
Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
Work is calculated by multiplying force by the distance that the object had moved. The applied force is 60 N, moving the object by 10 m. Thus, the work does is 600 J. For the friction force which is equal to,
100N x 0.250 = 25.0 N
the work done is,
W = (60 N - 25 N) x 10 m = 350 J
The kinetic energy of the box can be equated to this force. Thus, the answer is also 350 J.
Answer:
4.62 N-s
Explanation:
recall that the formula for impulse is given by
Impulse = Force x change in time
in our case, we are given
Force = 14 N
change in time = 0.33s
Simply substituting the above into the equation for impulse, we get
Impulse = Force x change in time
Impulse = 14 x 0.33
= 4.62 N-s