Answer:
Low-cost energy. Although building nuclear power plants has a high initial cost, it’s relatively cheap to produce energy from them and they have low operating costs.
Reliable. One of the biggest benefits of nuclear energy is that it is a reliable power generation source.
Zero carbon emissions. Nuclear power reactors do not produce any carbon emissions.
Promising future energy supply.
Q = mc<span>∆t, where:
q = energy flow
m = mass, 120 000 g
c = specific heat capacity, 4.81 J/gC
</span><span>∆t = change in temperature, ~75 (100 - 25, which is room temperature)
Substituting in the values, we get:
q = 120000 x 4.81 x 75 = 43290000 Joules = 43.29 MJ
Hope I helped!! xx
</span>
As you coast down a long hill on your bicycle, potential energy from your height is converted to kinetic energy as you and your bike are pulled downward by gravity along the slope of the hill. While there is air resistance and friction slowing you down by a little bit, your speed increases gradually until you apply the brakes, causing enough friction to slow yourself and the bike to a stop at the bottom.
A roller coaster will have higher kinetic energy at the lower hill because it will have already been moving as opposed to the initial hill. But I'm not one hundred percent certain. You can always google this stuff, but I do know for sure that at the first hill, the roller coaster will have higher potential energy.
Hope this helps!
This is because, different colored object absorbs differnt wavelenght of light making it appears with different color. There is a spectrum of white light in which red have the longest wavelength.
Hope this will help.
To break this problem down, let's start with what we know. The equation given finds one component of the velocity and multiplies it by the change in time. This will not find the acceleration that the first two answers say it will, meaning that the answer isn't A or B.
That leaves us with the final two answers, C and D. If the projectile was launched horizontally and we were trying to find the horizontal displacement, we wouldn't need to use cosθ to find the horizontal velocity, meaning that our answer is most likely C) <span>the horizontal displacement of a projectile launched at an angle!</span><span />