The answer to this is A. this is because, refraction with a light or sound wave changing its direction involve propagation,(in which propagation is the change in direction of a light or sound wave)
Answer:
B. Steam burns the skin worse than hot water because the latent heat of vaporization is released as well.
Explanation:
It is given that both steam and the boiling water when in contact with the skin cools down from 100 to 34 degrees Celsius.
For any substance of mass m, the heat required to change the temperature by
is
(S.I. unit = Joules).
where C, the specific heat capacity is the same and a constant for both the condensed steam and the boiling water.
But, there is a "hidden" energy (heat) released by the steam called latent heat
(given by mL, L = specific latent heat) which allows the phase transition (gas to liquid). While both of them are at the same temperature, their energy (heat) is different, which is why steam causes burns worse than boiling water
Answer:
The distance is
Explanation:
From the question we are told that
The initial speed of the electron is 
The mass of electron is 
Let
be the distance between the electron and the proton when the speed of the electron instantaneously equal to twice the initial value
Let
be the initial kinetic energy of the electron \
Let
be the kinetic energy of the electron at the distance
from the proton
Considering that energy is conserved,
The energy at the initial position of the electron = The energy at the final position of the electron
i.e

are the potential energy at the initial position of the electron and at distance d of the electron to the proton
Here 
So the equation becomes

Here
are the charge on the electron and the proton and their are the same since a charge on an electron is equal to charge on a proton
is electrostatic constant with value 
i.e
is the velocity at distance d from the proton = 2
So the equation becomes

![\frac{1}{2} mv_i^2 = 4 [\frac{1}{2}mv_i^2 ]- \frac{k(q)^2}{d}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20mv_i%5E2%20%20%3D%204%20%5B%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%20%5D-%20%5Cfrac%7Bk%28q%29%5E2%7D%7Bd%7D)
![3[\frac{1}{2}mv_i^2 ] = \frac{k(q)^2}{d}](https://tex.z-dn.net/?f=3%5B%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%20%5D%20%3D%20%5Cfrac%7Bk%28q%29%5E2%7D%7Bd%7D)
Making d the subject of the formula



A. 
The orbital speed of the clumps of matter around the black hole is equal to the ratio between the circumference of the orbit and the period of revolution:

where we have:
is the orbital speed
r is the orbital radius
is the orbital period
Solving for r, we find the distance of the clumps of matter from the centre of the black hole:

B. 
The gravitational force between the black hole and the clumps of matter provides the centripetal force that keeps the matter in circular motion:

where
m is the mass of the clumps of matter
G is the gravitational constant
M is the mass of the black hole
Solving the formula for M, we find the mass of the black hole:

and considering the value of the solar mass

the mass of the black hole as a multiple of our sun's mass is

C. 
The radius of the event horizon is equal to the Schwarzschild radius of the black hole, which is given by

where M is the mass of the black hole and c is the speed of light.
Substituting numbers into the formula, we find
