1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
6

Solve the simultaneous equations y = 9 - X y = 2x2 + 4x + 6

Mathematics
1 answer:
kenny6666 [7]3 years ago
3 0

Answer:

\mathrm{Therefore,\:the\:final\:solutions\:for\:}y=9-x,\:y=2x^2+4x+6\mathrm{\:are\:}

\begin{pmatrix}x=\frac{1}{2},\:&y=\frac{17}{2}\\ x=-3,\:&y=12\end{pmatrix}

Step-by-step explanation:

Given the simultaneous equations

y=9-x

y\:=\:2x^2\:+\:4x\:+\:6

Subtract the equations

y=9-x

-

\underline{y=2x^2+4x+6}

y-y=9-x-\left(2x^2+4x+6\right)

\mathrm{Refine}

x\left(2x+5\right)=3

\mathrm{Solve\:}\:x\left(2x+5\right)=3

2x^2+5x=3        ∵ \mathrm{Expand\:}x\left(2x+5\right):\quad 2x^2+5x

\mathrm{Subtract\:}3\mathrm{\:from\:both\:sides}

2x^2+5x-3=3-3

\mathrm{Solve\:with\:the\:quadratic\:formula}

\mathrm{Quadratic\:Equation\:Formula:}

\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=2,\:b=5,\:c=-3:\quad x_{1,\:2}=\frac{-5\pm \sqrt{5^2-4\cdot \:2\left(-3\right)}}{2\cdot \:2}v\\

x=\frac{-5+\sqrt{5^2-4\cdot \:2\left(-3\right)}}{2\cdot \:2}

  =\frac{-5+\sqrt{5^2+4\cdot \:2\cdot \:3}}{2\cdot \:2}

  =\frac{-5+\sqrt{49}}{2\cdot \:2}

  =\frac{-5+\sqrt{49}}{4}

  =\frac{-5+7}{4}

  =\frac{2}{4}

  =\frac{1}{2}

Similarly,

x=\frac{-5-\sqrt{5^2-4\cdot \:2\left(-3\right)}}{2\cdot \:2}:\quad -3

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

x=\frac{1}{2},\:x=-3

\mathrm{Plug\:the\:solutions\:}x=\frac{1}{2},\:x=-3\mathrm{\:into\:}y=9-x

\mathrm{For\:}y=9-x\mathrm{,\:subsitute\:}x\mathrm{\:with\:}\frac{1}{2}:\quad y=\frac{17}{2}

\mathrm{For\:}y=9-x\mathrm{,\:subsitute\:}x\mathrm{\:with\:}-3:\quad y=12

\mathrm{Therefore,\:the\:final\:solutions\:for\:}y=9-x,\:y=2x^2+4x+6\mathrm{\:are\:}

\begin{pmatrix}x=\frac{1}{2},\:&y=\frac{17}{2}\\ x=-3,\:&y=12\end{pmatrix}

You might be interested in
Which phrase is a description of 2m + 7
In-s [12.5K]

Seven more than twice a number. Hopes this helps mate <3

-Maddy

5 0
3 years ago
Read 2 more answers
Three landmarks of baseballachievement are Ty Cobb’s batting average of 0.420 in 1911,Ted Williams’s 0.406 in 1941, and George B
harina [27]

Answer:

Ted Williams has the highest standardized score, hence Williams is the best of the three

Cobb is the second highest and hence, the better player

George Brett is third

Step-by-step explanation:

Given the data:

Decade : 1910 __ 1940 ____ 1970

Mean, μ: 0.266 __0.267 ___ 0.261

S/dev, σ : 0.0371 _ 0.0326 __ 0.0317

To compute the standard unit for batting averages, we obtain the standardized score for each of Cobb,Williams, and Brett.

Standardized score (Zscore) : (x - μ) / σ

Cobb, x = 0.420

Ted Williams, x = 0.406

George Brett, x = 0.390

COBB:

Zscore = (0.420 - 0.266) / 0.0371 = 4.1509

Ted Williams :

Zscore = (0.406 - 0.267) / 0.0326 = 4.2638

George, Brett = (0.390 - 0.261) / 0.0317 = 4.0694

Ted Williams has the highest standardized score, hence Williams is the best of the three

Cobb is the second highest and hence, the better player

George Brett is third

6 0
2 years ago
( 9b - 3 ) ( b + 6 ) <br> Simplify this expression ! <br> Please answer this !!
Colt1911 [192]

Answer:

9b^2+3b-18

Step-by-step explanation:

make a box and multiply each of the parts

7 0
3 years ago
What is the domain of y=log(x+2)
Andru [333]

Answer:

\huge\boxed{x>-2\to x\in(-2;\ \infty)}

Step-by-step explanation:

y=\log(x+2)\\\\\bold{Domain:}\\\\x+2>0\qquad|\text{subtract 2 from both sides}\\\\x+2-2>0-2\\\\x>-2

8 0
3 years ago
When 5x^2 + 2= 4x is written in standard form, what are the values of a, b, and c
goblinko [34]

The standard form of a quadratic equation is

ax^{2}+bx+c=0,

where a, b, and c are coefficients. You want to get the given equation into this form. You can accomplish this by putting all the non-zero values on the left side on the equation.

In this case, the given equation is

5x^{2}+2=4x

Since 4x is on the right side of the equation, we subtract that from both sides. The resulting equation is

5x^{2}-4x+2=0

Looking at the standard form equation ax^{2}+bx+c=0, we can see that

a=5, b=-4, c=0

7 0
3 years ago
Other questions:
  • Simplify 5x + 8y + 4x<br><br><br> 17x<br><br><br> 9x + 8y<br><br><br> 5x + 12y<br><br><br> 17xy
    14·1 answer
  • For the function f(x) = 9-xcalculate the following function values:<br> f(1) =<br> f(2)=
    12·1 answer
  • Given the function f(x) = 5^x, Section A is from x = 0 to x = 1 and Section B is from x = 2 to x = 3. Part A: Find the average r
    9·1 answer
  • I need help with this
    12·1 answer
  • Your plan was to be on the road by 9 A.M. but you did not leave the garage until 10 A.M. You then drove with the cruise control
    15·1 answer
  • a light bulb consumes 6300 watt hours in 3 days and 12 hours. how many watt hours does it consume per day
    15·1 answer
  • HeLLPPPP PLLLSs!!!!!
    14·1 answer
  • Which graph shows a function and its inverse?<br><br> need help asap
    14·1 answer
  • One of the goats on Diane's farm is sick and has a high fever. Over the course of 4 hours, its
    9·1 answer
  • Help if you can<br> Please no links or false answers
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!