Answer with Explanation:
Mass of block=1.1 kg
Th force applied on block is given by
F(x)=
Initial position of the block=x=0
Initial velocity of block=
a.We have to find the kinetic energy of the block when it passes through x=2.0 m.
Initial kinetic energy=
Work energy theorem:

Where
Final kinetic energy
=Initial kinetic energy

Substitute the values then we get

Because work done=

![K_f=[2.4x-\frac{x^3}{3}]^{2}_{0}](https://tex.z-dn.net/?f=K_f%3D%5B2.4x-%5Cfrac%7Bx%5E3%7D%7B3%7D%5D%5E%7B2%7D_%7B0%7D)

Hence, the kinetic energy of the block as it passes thorough x=2 m=2.13 J
b.Kinetic energy =
When the kinetic energy is maximum then 





Substitute x=

Substitute x=

Hence, the kinetic energy is maximum at x=
Again by work energy theorem , the maximum kinetic energy of the block between x=0 and x=2.0 m is given by

![k_f=[2.4x-\frac{x^3}{3}]^{\sqrt{2.4}}_{0}](https://tex.z-dn.net/?f=k_f%3D%5B2.4x-%5Cfrac%7Bx%5E3%7D%7B3%7D%5D%5E%7B%5Csqrt%7B2.4%7D%7D_%7B0%7D)

Hence, the maximum energy of the block between x=0 and x=2 m=2.48 J