Answer:
<h2>
4.25m/s</h2><h2>
E. None of the option is correct</h2>
Explanation:
Using the law of conservation of momentum to solve the problem. According to the law, the sum of momentum of the bodies before collision is equal to the sum of the bodies after collision. The bodies move with the same velocity after collision.
Mathematically.
mu + MU = (m+M)v
m and M are the masses of the bullet and the block respectively
u and U are their respective velocities
v is their common velocity
from the question, the following parameters are given;
m = 20g = 0.02kg
u = 960m/s
M = 4.5kg
U =0m/s (block is at rest)
Substituting this values into the formula above to get v;
0.02(960)+4.5(0) = (0.02+4.5)v
19.2+0 = 4.52v
4.52v = 19.2
Dividing both sides by 4.52
4.52v/4.52 = 19.2/4.52
v = 4.25m/s
Since they have the same velocity after collision, then the speed of the block immediately after the collision is also 4.25m/s
Answer:
Discuss the importance of fluid balance while exercising.
Responses will vary. A sample response follows: While exercising, the body loses fluids through perspiration and respiration. The more rigorous the exercise, the more fluids are lost. It's important to replace these fluids both during and after the exercise.
Explanation: HOPE THIS HELPS YOU!!
:)
:)
:)
Answer:
The bottom of the cup passes the sound waves to the string, and so on to the other cup. You can hear surprisingly far using a string telephone if help the right way! If the string is kept tight, the sound waves will travel.
Explanation:
The answer is 2.49 x 10^5 KJ. This was obtained (1) use the formula for specific heat to achieve Q or heat then (2) get the energy to melt the copper lastly (3) Subtract both work and the total energy required to completely melt the copper bar is achieved.