Answer:
Corect answer is D
Explanation:
Assuming that the C
O
2 gas is behaving ideally, therefore, we can use the ideal gas law to find the pressure increase in the container by:
P
V=nRT ⇒ P=n
R
T
/V
n=no of moles of the gas = mass/molar mass
Molar mass o f C
O
2=44g/mol, mass = 44g
mole n = 1mole
T=20C=293K
R=0.0821L.atm/mol.K
P=nRT/V
P = 1 x 0.0821 x 293/2
P = 12atm
Explanation:
it is almost zero .this is because the distance and the electrostatic force are inversely proportional
The current is defined as the ratio between the charge Q flowing through a certain point of a wire and the time interval,

:

First we need to find the net charge flowing at a certain point of the wire in one second,

. Using I=0.92 A and re-arranging the previous equation, we find

Now we know that each electron carries a charge of

, so if we divide the charge Q flowing in the wire by the charge of one electron, we find the number of electron flowing in one second: