<u>The two ways to find acceleration in non uniform motion are as follows:</u>
<u>Explanation:</u>
Non-uniform acceleration comprises the most common description of motion. Acceleration refers to the rate of changes of velocity per unit time. Basically, it implies that acceleration changes during motion. This variety can be communicated either as far as position (x) or time (t).
Accordingly, non-uniform acceleration motion can be carried out in 2 ways:
Calculus analysis is general and accurate, but limited to the availability of speed and acceleration expressions. It is not always possible to get the expression of motion attributes in the form "x" or "t". On the other hand, the graphic method is not accurate enough, but it can be used accurately if the graphic has the correct shapes.
The use of calculations involves differentiation and integration. Integration enables evaluation of the expression of acceleration of speed and expression of movement at a distance. Similarly, differentiation allows us to evaluate expression of speed position and expression speed to acceleration.
The amount left of a given substance can be calculated through the equation,
A = (A0) x 0.5^n/h
From the given scenario,
A/A0 = 0.75 = 0.5*(60/h)
The value of h from the equation is 144.565 minutes.
F = 2820.1 N
Explanation:
Let the (+)x-axis be up along the slope. The component of the weight of the crate along the slope is -mgsin15° (pointing down the slope). The force that keeps the crate from sliding is F. Therefore, we can write Newton's 2nd law along the x-axis as
Fnet = ma = 0 (a = 0 no sliding)
= F - mgsin15°
= 0
or
F = mgsin15°
= (120 kg)(9.8 m/s^2)sin15°
= 2820.1 N
Answer:
Fe = 25.67 N
Fg = 2.0734 x 10^-35 N
Explanation:
r = 3 x 10^-15 m
G = 6.67 x 10^-11 Nm^2/kg^2
Mp = 1.6726231 x 10^-27 kg
Qp = 1.6021 x 10^-19 C
K = 9 x 10^9 Nm^2/C^2
The formula for the electrical force between the two protons is given by
Fe = 25.67 N
The formula for the gravitational force between the two protons is given by
Fg = 2.0734 x 10^-35 N
Answer:
e=58%
Explanation:
Given data
The Otto-cycle engine in a Mercedes-Benz SLK230 has a compression ratio of 8.8.
Solution
We want to calculate the ideal efficiency of the engine when ratio of heat capacity for gas used γ=1.40. Ideal efficiency (e) of the Otto cycle given by:
Substitute the given values to find efficiency e
e=58%