1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
3 years ago
11

Based on the information presented in the graph, what is the velocity of the object?

Physics
1 answer:
Sladkaya [172]3 years ago
7 0

Answer:

3 m/s

Explanation:

<u>The velocity of a position-time graph is the slope of the line.</u>  Slope is rise over run, or rise divided by run.  The rise (how many units the line goes up) is 3 units and the run is 1 unit.  3/1 is 3, so the velocity is 3 m/s.

You might be interested in
Describe the kinetic molecular theory
tatuchka [14]
The kinetic theory of gases is a simple, historically significant model of the thermodynamic behavior of gases, with which many principal concepts of thermodynamics were established. The model describes a gas as a large number of identical submicroscopic particles, all of which are in constant, rapid, random motion
8 0
3 years ago
Two gliders are on a frictionless, level air track. Both gliders are free to move. Initially, glider A moves to the right and gl
Yuliya22 [10]

Answer:

The change in momentum of both objects is the same but in opposite direction.

Explanation:

Hi there!

The momentum of the system is calculated as the sum of the momentums of each glider. The momentum of the system is conserved if no external force is acting on the objects (as in this case). That means that the initial momentum of the system is equal to the final momentum of the system.

The momentum of each glider is calculated as follows:

p = m · v

Where:

p = momentum.

m = mass of the glider.

v = velocity.

The momentum of the system for glider A and B can be calculated as follows:

initial momentum = mA · vA + mB · vB

Where:

mA and vA = mass and velocity of glider A

mB and vB = mass and velocity of glider B

Initially, glider B is at rest so that vB = 0. Then, the initial momentum of the system is:

initial momentum = mA · vA

The final momentum of the system is calculated as follows:

final momentum = mA · vA´ + mB · vB´

Where vA´ and vB´ are the final velocities of glider A and B respectively.

We know that mB = 4mA and that vA´ is negative. The the final momentum will be:

final momentum = -mA · vA´ + 4mA · vB´

Since initial momentum = final momentum:

mA · vA = -mA · vA´ + 4mA · vB´

mA · vA + mA · vA´ = 4mA · vB´

<u>vA + vA´ = 4 vB´</u>

<u />

The change in momentum of glider A (ΔpA) is calculated as follows:

ΔpA = final momentum - initial momentum

ΔpA =  -mA · vA´ - mA · vA = -mA (vA + vA´) = -4mA · vB´

The change in momentum of glider B (ΔpB) is calculated as follows:

ΔpB = final momentum - initial momentum

ΔpB = 4mA · vB´ - 0 = 4mA · vB´

Then, the change in momentum of both objects is the same but in opposite direction. That´s why the momentum is conserved.

4 0
2 years ago
To determine a waves' frequency, you must know the
givi [52]
The correct answer is<span> number of oscillations in a given period of time

This is measured in what is called the Hertz measurement and the period of time is usually taken to be per second.</span>
6 0
3 years ago
A particular planet has a moment of inertia of 9.74 × 1037 kg ⋅ m2 and a mass of 5.98 × 1024 kg. Based on these values, what is
malfutka [58]

Answer:  A) 6.38(10)^{6} m

Explanation:

The equation for the moment of inertia I of a sphere is:

I=\frac{2}{5}mr^{2} (1)

Where:

I=9.74(10)^{37}kg m^{2} is the moment of inertia of the planet (assumed with the shape of a sphere)

m=5.98(10)^{24}kg is the mass of the planet

r is the radius of the planet

Isolating r from (1):

r=\sqrt{\frac{5I}{2m}} (2)

Solving:

r=\sqrt{\frac{5(9.74(10)^{37}kg m^{2})}{2(5.98(10)^{24}kg)}} (3)

Finally:

r=6381149.077m \approx 6.38(10)^{6} m

Therefore, the correct option is A.

4 0
2 years ago
A 0.750 kg block is attached to a spring with spring constant 17.5 N/m. While the block is sitting at rest, a student hits it wi
Dmitriy789 [7]

Answer:

a

 A =  0.081 \  m

b

The value is  u =  0.2569 \  m/s

Explanation:

From the question we are told that

   The mass is  m  =  0.750 \ kg

   The spring constant is  k  =  17.5 \  N/m

    The instantaneous speed is  v  =  39.0 \  cm/s= 0.39 \  m/s

    The position consider is  x =  0.750A  meters from equilibrium point

   

Generally from the law of  energy conservation we have that

        The kinetic energy induced by the hammer  =  The energy stored in the spring

So

          \frac{1}{2} *  m * v^2  =  \frac{1}{2}  *  k  *  A^2

Here a is the amplitude of the subsequent oscillations

=>      A =  \sqrt{\frac{m *  v^ 2 }{ k} }

=>      A =  \sqrt{\frac{0.750 *  0.39 ^ 2 }{17.5} }

=>       A =  0.081 \  m

Generally from the law of  energy conservation we have that

The kinetic energy  by the hammer  =  The energy stored in the spring at the point considered   +   The kinetic energy at the considered point

             \frac{1}{2}  * m *  v^2 = \frac{1}{2}  * k x^2 + \frac{1}{2}  * m *  u^2

=>          \frac{1}{2}  * 0.750 *  0.39^2 = \frac{1}{2}  * 17.5* 0.750(0.081 )^2 + \frac{1}{2}  * 0.750 *  u^2

=>          u =  0.2569 \  m/s

3 0
2 years ago
Other questions:
  • Which of the following is a force?
    9·2 answers
  • The image shows streetlights powered by solar panels. Which sequence shows the energy transformation is taking place in these li
    14·2 answers
  • 3. what could you do to increase the precision of your measurements? What factors limit the
    8·1 answer
  • A piece of plastic has a net charge of +9.9 μC. How many more protons than electrons does this piece of plastic have? (e = 1.60
    10·1 answer
  • How does the Coriolis effect impact ocean currents in the Northern and Southern Hemispheres?
    14·1 answer
  • A spring has a spring constant of 50 N/m. If you stretch the spring 0.2 m past'
    5·1 answer
  • laser light hits two very narrow slits that are separated by 0.1mm adn is viewwed on a screen 2m downstream. Sketch on the axis
    5·2 answers
  • Post-Impressionist Georges Seurat is famous for a painting technique known as pointillism. His paintings are made up of differen
    6·1 answer
  • 19. a) Name the type of Joint present in i) Neck ii) Shoulder b) Which of the skull bones are movable ?​
    14·1 answer
  • When an electron enters a region of uniform magnetic field (B=0.19T), with its
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!