Answer:
Explanation:
It makes sense because Helium and Hydrogen only hold 1 and 2 subsequent protons/neutrons and electrons. When the Big Bang happened the entire universe was so hot that it was impossible for elements to form since it was impossible for electrons to stay bound to the atoms. After a few seconds the universe began to cool enough for electrons to bond to atoms and create different elements. Since Helium and Hydrogen have 1 and 2 electrons subsequently we can assume that they were the first elements to be created. Also they are the most abundant elements in the Universe which backs up this theory.
Answer:
Your question is complex, because I think you wrote it wrong.
Although in front of this what I can help you is that the carbons are associated between a single, double or triple union.
This depends on whether they are attached to more or less carbons or hydrogens, the carbons have the possibility of joining 4 radicals, both other carbons and hydrogens.
Simple junctions talks about compound organisms called ALKANS.
The double unions, in organic these compounds are called as ALQUENOS.
And as for the tertiary unions, the organic chemistry names them as ALQUINOS.
These compounds that we write, a simple union, the less energy, the less this union, that is why the triple bond is the one that contains the most energy when breaking or destroying it in a reaction.
Explanation:
In a chemical compound the change of these unions if we modified them we would generate changes even in the classifications naming them as well as different compounds and not only that until they change their properties
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.
Answer:
H2S(g) + 2OH^-(aq) --------> S^2-(aq) + 2H2O(l)
Explanation:
We know that the net ionic equation shows the major reaction that occurs in the reaction system.
The molecular reaction equation is;
H2S(g) + 2NaOH(aq) ------> Na2S(aq) + 2H2O(l)
The complete ionic equation is;
H2S(g) + 2Na^+(aq) + 2OH^-(aq) --------> 2Na^+(aq) + S^2-(aq) + 2H2O(l)
Net ionic equation;
H2S(g) + 2OH^-(aq) --------> S^2-(aq) + 2H2O(l)
Answer: 6
Explanation: if you multiply the number of moles in the hydrogen atoms by the number of the once displayed and you multiply it by 3 and get the answer 6