A simple circuit consists of a battery to provide power, wires to carry the electrical power, and
load that uses the electrical power for example a light globe
good luck
Answer:
The 2292 moles of CO are needed to react completely with 122 Kg of Fe₂O₃.
Explanation:
Given data:
Mass of Fe₂O₃ = 122 Kg ( 122×1000 = 122000 g)
Moles of CO = ?
Solution:
Chemical equation:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Number of moles of Fe₂O₃:
Number of moles = mass/ molar mass
Number of moles = 122000 g /159.69 g/mol
Number of moles = 764 mol
Now we will compare the moles of Fe₂O₃ with CO.
Fe₂O₃ : CO
1 : 3
764 : 3×764 =2292 mol
The 2292 moles of CO are needed to react completely with 122 Kg of Fe₂O₃.
A cold air mass moves into an area of warm air
(B. 3) 172 All nonzero digits are significant.
(A. 4) 450.0 x 10^3 Trailing zeroes after the decimal point are significant.
(A. 4) 3427 All nonzero digits are significant.
(B. 3) 0.0000455 Leading zeroes are not significant.
(B. 3) 0.00456 Leading zeroes are not significant.
(C. 5) 2205.2 Zeroes between nonzero digits are significant.
(C. 5) 107.20 Trailing zeroes after the decimal point are significant.
(B. 3) 0.0473 Leading zeroes are not significant.
Answer:
The correct answer is option C.
Explanation:

On increasing the pH of the blood the hydronium ions concentration will decrease which will result in decrease in concentration of hydronium ions at the equilibrium state of hydrogen carbonate.
Le-Chatelier's principle:
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
According to Le-Chatelier's principle , on decrease in a concentration of the product the equilibrium moves in forward correction to re-establish itself.
So, on increasing the pH, the hydronium ions concentration will decrease which results in disassociation of more hydrogen carbonate to maintain the pH of the blood.
Hence, the correct answer is option C.