All of the acid molecules in beaker 1 dissociate fully and exist as and ions. As a result, beaker 1 represents a strong acid solution. The majority of the molecules in beaker 2 are undissociated.
Generally speaking, acidic soil, with a pH lower than 6.0, yields blue or lavender-blue hydrangea blooms. Alkaline soil, with a pH above 7.0, promotes pinks and reds. With a pH between 6 and 7, the blooms turn purple or bluish-pink. To lower your pH, add garden sulfur or aluminum sulfate to your soil.
The secret's in the soil
Let’s look at why pH is so important.
Most major plant nutrients are more accessible at a pH of 6 to 6.5. A pH that is too high or too low can keep plants from absorbing nutrients from the soil. The nutrients are unavailable — or not absorbable — to the plant because of soil's chemistry. This problem can manifest itself in a variety of ways, but in the case of hydrangeas, the bloom color changes.
Color variation in hydrangeas is due to the presence or absence of aluminum compounds in the flowers. If aluminum is present, the color is blue. If it is present in small quantities, the color is variable between pink and blue. If aluminum is absent, the flowers are pink.
Complete Question
The complete question is show on the first uploaded image
Answer:
This is shown on the second,third , fourth and fifth image
Explanation:
This is shown on the second,third , fourth and fifth image
Explanation:
As
is a covalent compound because it is made up by the combination of two non-metal atoms. Atomic number of an iodine atom is 53 and it contains 7 valence electrons as it belongs to group 17 of the periodic table.
Therefore, sharing of electrons will take place when two iodine atoms chemically combine with each other leading to the formation of a covalent bonding.
Hence, weak forces like london dispersion forces will be present between a molecule of
.
The weak intermolecular forces which can arise either between nucleus and electrons or between electron-electron are known as dispersion forces. These forces are also known as London dispersion forces and these are temporary in nature.
thus, we can conclude that london dispersion force is the major attractive force that exists among different
molecules in the solid.
Answer:
The image shows that the red guards were a paramilitary group.
The image also shows that another role of the red guards was to adhere to maos teaching and impose them on the people
Explanation: