Answer:
He
Explanation:
A molecule is the smallest physical unit of a substance that can exist independently, consisting of 2 or more atoms chemically combined
He is one atom of Helium
Answer:
![[H_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D0.183M)
![[I_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.183M)
![[HI]_{eq}=0.025M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D0.025M)
Explanation:
Hello.
In this case, for this equilibrium problem, we first realize that at the beginning there is just HI, it means that the reaction should be rewritten as follows:

Whereas the law of mass action (equilibrium expression) is:
![Kc=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
That in terms of initial concentrations and reaction extent or change
turns out:
![Kc=\frac{x*x}{([HI]_0-2x)^2}\\\\54.3=\frac{x^2}{(0.391M-2x)^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7Bx%2Ax%7D%7B%28%5BHI%5D_0-2x%29%5E2%7D%5C%5C%5C%5C54.3%3D%5Cfrac%7Bx%5E2%7D%7B%280.391M-2x%29%5E2%7D)
And the solution via solver or quadratic equation is:

Whereas the correct answer is 0.183 M since the other value yield a negative concentration of HI at equilibrium (0.391-2*0.210=-0.029M).This, the equilibrium concentrations are:
![[H_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D0.183M)
![[I_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.183M)
![[HI]_{eq}=0.391M-2*0.183M=0.025M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D0.391M-2%2A0.183M%3D0.025M)
Regards.
Answer:
See explanation.
Explanation:
Hello,
Haber process is defined as the widely acknowledged productive process of ammonia by the reaction:

Which is carried out in gaseous phase. Thus, by means of the Le Chatelier's principle, it is possible to know that its standard enthalpy of reaction is -45.90 kJ/mol (NIST webbook) for which it is an exothermic chemical reaction, for that reason less ammonia will be produced at high temperature, nonetheless, the temperature should not be too low since the reaction rate significantly decrease, therefore, the optimum found temperature is 450 °C.
Moreover, since there are more moles (3+1=4) at the reactants and less moles at the products (2), increasing the pressure of the reaction increases the yield of ammonia, nonetheless, higher pressures involve the purchasing of more expensive equipment to withstand the high-pressures, for that reason, the best found pressure has been set as 200 atm.
Best regards.
Answer:
A photon
Explanation:
When electrons pass close to the standing wave of light, they hit the particles that are called photons