The volume of neon when the pressure is reduced to 93.3 kPa is 519 mL.
Explanation:
The kinetic theory of gases is mostly based on Boyle's law. From the Boyle's law, the pressure experienced by any gas molecules is inversely proportional to volume of the gas molecules. Also this inverse relation is obeyed if and only if the number of moles and temperature of the gas molecules remained constant.
So,
So if there is a change in pressure then there will be inverse change in volume. That means if there is decrease in the pressure of gas molecules then there will be increase in the volume and vice versa.
So the Boyle's law is combined as 
As here the initial pressure or
is 1 atm or 101.3 kPa and the initial volume is 478 mL. Similarly, the final pressure is 93.3 kPa and the final volume will be


So, the volume of neon when the pressure is reduced to 93.3 kPa is 519 mL.
2Fe2O3, reason is when we add 4Fe + 3O2, we get the same answer, but in a different form.
16.4 grams is the mass of solute in a 500 mL solution of 0.200 M
.
sodium phosphate
Explanation:
Given data about sodium phosphate
atomic mass of Na3PO4 = 164 grams/mole
volume of the solution = 500 ml or 0.5 litres
molarity of sodium phosphate solution = 0.200 M
The formula for molarity will be used here to know the mass dissolved in the given volume of the solution:
The formula is
molarity = 
putting the values in the equation, we get
molarity x volume = number of moles
0.200 X 0.5= number of moles
number of moles = 0.1 moles
Atomic mass x number of moles = mass
putting the values in the above equation
164 x 0.1 = 16.4 grams
16.4 grams of sodium phosphate is present in 0.5 L of the solution to make a 0.2 M solution.
A=acid
B=it say neither it say it’s alkaline
C=acid
D= it say neither it say it’s alkaline