Answer:
88.34 N directed towards the center of the circle
Explanation:
Applying,
F = mv²/r................... Equation 1
F = Force needed to keep the mass in a circle, m = mass of the mass, v = velocity of the mass, r = radius of the circle.
But,
v = 2πr/t................... Equation 2
Where t = time, π = pie
Substitute equation 2 into equation 1
F = m(2πr/t)²/r
F = 4π²r²m/t²r
F = 4π²rm/t²............. Equation 3
From the question,
Given: m = 0.8 kg, r = 0.7 m, t = 0.5 s
Constant: π = 3.14
Substitute these values into equation 3
F = 4(3.14²)(0.7)(0.8)/0.5²
F = 88.34 N directed towards the center of the circle
Answer:
Explanation:
From the given information:
The initial PE
= m×g×h
= 5 kg × 9.81 m/s² × 10 m
= 490.5 J
The change in Potential energy P.E of the box is:
ΔP.E = 
ΔP.E = 0 -
ΔP.E = 
If we take a look at conservation of total energy for determining the change in the internal energy of the box;


this can be re-written as:

Here, K.E = 0
Also, 70% goes into raising the internal energy for the box;
Thus,


ΔU = 343.35 J
Thus, the magnitude of the increase is = 343.35 J
Hey, Name's Jessy. I hope, I answer your question.
Nearly 400 lbs,by 11.73%.
A possible effect is the risk of Icecaps melted