Based on the data given, the energy required to remove an electron from a hydrogen atom in the n = 11 state is -0.112 eV
<h3>What is ionization energy?</h3>
Ionization energy is the energy requiredto remove an electron from a neutral atom or a cation in its gaseous state.
To calculate the energy required to remove the electron from a hydrogen atom in the n = 11 state, the formula below is used:
where

substituting the values:

Therefore, the energy required to remove an electron from a hydrogen atom in the n = 11 state is -0.112 eV
Learn more about ionization energy at: brainly.com/question/1445179
Answer:
NO is the limiting reagent.
In this reaction 0.886 mole of NO2 is produced
Explanation:
The chemical equation for this reaction is
2NO(g) + O2(g) → 2NO2(g)
In this limiting reagent reaction, 2 moles of NO reacts with one mole of O2 to produce 2 mole of 2NO2
0.886 mole of NO * (2 mole of NO2/2 mole of NO) = 0.886 mole of NO2
0.503 mole of O2 * (1 mole of NO2/1 mole of O2) = 1.01 mole of NO2
Hence, NO is the limiting reagent.
In this reaction 0.886 mole of NO2 is produced
A merger between two companies that produce separate services or components along the value chain for some final product
Answer:
2 C2H6 + 7 O2 = 4 CO2 + 6 H2O
Explanation:
The Bold Numbers are what you should put. This is balanced
The formula of work is Work (Joules)=Force (Newtons) · distance in the direction of the force (meters), therefore its just a matter of replacing factors.
Work done = 12 · 4.5= 54 joules