Answer:
homeostasis
Explanation:
source Wiki
In biology, homeostasis (or “health”) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and includes many variables, such as body temperature and fluid balance, being kept within certain pre-set limits (homeostatic range). Other variables include the pH of extracellular fluid, the concentrations of sodium, potassium and calcium ions, as well as that of the blood sugar level, and these need to be regulated despite changes in the environment, diet, or level of activity. Each of these variables is controlled by one or more regulators or homeostatic mechanisms, which together maintain life.
Answer:
productivity and water depth
Explanation:
The productivity and the depth of water are both equally important as it directly affects the accumulation of biogenic sediments such as the siliceous ooze and calcareous ooze. In the equator and the coastal upwelling areas, and at the site of divergence of oceans, there occurs a high rate and amount of productivity, and these are considered to be the primary productivity.
The siliceous oozes are a good indicator of extensively high productivity in comparison to the carbonate oozes. The main reason behind this is that the silica can be easily dissolved in the surface water. On the other hand, the carbonates dissolve at a relatively lower ocean water depth, so there requires a high amount of surface productivity in order to allow these siliceous oozes to reach the ocean bottom.
Thus, the water depth and productivity, both are considered as the limiting factor in determining the accumulation of biogenic oozes.
Answer:
0.0159m
Explanation:
9 M
Explanation:
Lead(II) chloride,
PbCl
2
, is an insoluble ionic compound, which means that it does not dissociate completely in lead(II) cations and chloride anions when placed in aqueous solution.
Instead of dissociating completely, an equilibrium rection governed by the solubility product constant,
K
sp
, will be established between the solid lead(II) chloride and the dissolved ions.
PbCl
2(s]
⇌
Pb
2
+
(aq]
+
2
Cl
−
(aq]
Now, the molar solubility of the compound,
s
, represents the number of moles of lead(II) chloride that will dissolve in aqueous solution at a particular temperature.
Notice that every mole of lead(II) chloride will produce
1
mole of lead(II) cations and
2
moles of chloride anions. Use an ICE table to find the molar solubility of the solid
PbCl
2(s]
⇌
Pb
2
+
(aq]
+
2
Cl
−
(aq]
I
−
0
0
C
x
−
(+s)
(
+
2
s
)
E
x
−
s
2
s
By definition, the solubility product constant will be equal to
K
sp
=
[
Pb
2
+
]
⋅
[
Cl
−
]
2
K
sp
=
s
⋅
(
2
s
)
2
=
s
3
This means that the molar solubility of lead(II) chloride will be
4
s
3
=
1.6
⋅
10
−
5
⇒
s
= √
1.6
4
⋅
10
−
5 =
0.0159 M
<u>Answer:</u> The volume of given mas of tin block at STP is 
<u>Explanation:</u>
To calculate volume of of the substance, we use the equation:

We are given:
Mass of tin = 95.04 g
Density of tin = 
Putting values in above equation, we get:

Hence, the volume of given mas of tin block at STP is 
If C3H8O is dissolved in water, it would be expected to be a strong electrolyte.
<h3>
What is a strong electrolyte?</h3>
A strong electrolyte is a solute or solution (already an electrolyte) that can completely dissociates in solution.
C3H8O is one of those compounds expected to be a strong electrolyte.
Thus, if C3H8O is dissolved in water, it would be expected to be a strong electrolyte.
Learn more about strong electrolytes here: brainly.com/question/2285692
#SPJ1