Answer:
log 5
Step-by-step explanation:
We can rewrite this by using a property of logs
log a - log b = log (a/b)
log(10) - log(2)
log(10/2)
log 5
Answer:
The chord is bisected.
Step-by-step explanation:
see the attached figure to better understand the problem
In the circle of the figure
The diameter is the segment DE
The chord is the segment AB
PA=PB=r ----> radius of the circle
Triangles PAC and PBC are congruent right triangles by SSS
Because
PA=PB
PC is a common side
AC=BC ----> Applying Pythagoras Theorem
therefore
The chord AB is bisected
Answer:
93.6 inch^2
Step-by-step explanation:
sides=6 side-length=6 inches Apothem= 5.2 inches Area= 6*(1/2)(6)(5.2)
∫(t = 2 to 3) t^3 dt
= (1/4)t^4 {for t = 2 to 3}
= 65/4.
----
∫(t = 2 to 3) t √(t - 2) dt
= ∫(u = 0 to 1) (u + 2) √u du, letting u = t - 2
= ∫(u = 0 to 1) (u^(3/2) + 2u^(1/2)) du
= [(2/5) u^(5/2) + (4/3) u^(3/2)] {for u = 0 to 1}
= 26/15.
----
For the k-entry, use integration by parts with
u = t, dv = sin(πt) dt
du = 1 dt, v = (-1/π) cos(πt).
So, ∫(t = 2 to 3) t sin(πt) dt
= (-1/π) t cos(πt) {for t = 2 to 3} - ∫(t = 2 to 3) (-1/π) cos(πt) dt
= (-1/π) (3 * -1 - 2 * 1) + [(1/π^2) sin(πt) {for t = 2 to 3}]
= 5/π + 0
= 5/π.
Therefore,
∫(t = 2 to 3) <t^3, t√(t - 2), t sin(πt)> dt = <65/4, 26/15, 5/π>.
Answer:
138 cm.
Step-by-step explanation:
So first, we find the S.A. of the front and back.
The diagram says the side length of the front is 3 cm. and 3 cm.
3x3=9. So then, the back is also 9 cm, 9+9=18.
Now to find the S.A.'s of the four sides, you have to see the side lengths of each of them. The side lengths are 3 and 10.
3x10=30. This means each of them is 30 cm.
30x4=120. 120 is the total surface area of the four sides.
To find the total surface area of the whole rectangle, you add all the surface areas.
120+18=138 cm. (Not squared, since it's surface area and not area.)