Answer:
D
Explanation:
I believe it is D. your kinetic energy would be at b. A, the cart would be going at a constant rate, because there is no hill or steep slope.
Since the compound has 1.38 time that of oxygen gas at the same conditions of temperature and pressure, we have the relationship:
MW/MWoxygen = 1.38
MW = 44.16
Since there is water formed during the reaction, the formula of the compound must be:
XaHb
where a and b are the coefficients of each element.
If the compound reactions with oxygen forming water and an oxide of the element X, the combustion reaction must be:
XaHb + ((2a + (b/2))/2) O2 = a (XO2) + (b/2)(H2O)
Using dimensional analysis:
10 (1/44.16) (b/2 / 1) (18) = 16.3
Solving for b:
b = 8
The compound now is XaH8. Most probably, the compound is C3H8 since it has a molecular formula of 44 and it reacts with O2 to form water and CO2.
Answer:
B: Fission reactors generate huge amounts of heat.
C: Fission breaks down unstable elements such as uranium in a breeder reactor which is broken down in the process of fusion which is literally breaking down of elements.
E: fission is used in nuclear weapons as it is easier to accomplish then fusion bombs
Explanation:
A: as a zero-waste energy source
B: for generating large amounts of heat
C: for creating stable elements from unstable ones
D: for creating new, heavier elements
E: as the energy source in nuclear weapons
Answer:
55
Explanation:
25g is less dense than 80g therefore will mostly float. if you subtract 80-25 that will leave you will 55 as the difference
The answer should be: <span>D. The reaction rate is equal in both directions
In the equilibrium state, the rate of reaction to the right is same as the reaction to the left. Because of this, the concentration of the reactant and product will be kept same.
It might seem like the reaction is stopped because there is no change in the concentration, but it wasn't. Adding a reactant or product will break the equilibrium state.</span>