That is True XD
Hope that helps :D
Answer is: A) 7.84 g.
V(Mg(NO₃)₂) = 151 mL ÷ 1000 mL/L.
V(Mg(NO₃)₂) = 0.151 L; volume of the magnesium nitrate.
c(Mg(NO₃)₂) = 0.352 M; molarity of the solution.
n(Mg(NO₃)₂) = V(Mg(NO₃)₂) · c(Mg(NO₃)₂).
n(Mg(NO₃)₂) ) = 0.151 L · 0.352 mol/L.
n(Mg(NO₃)₂) = 0.0531 mol; amount of the substance.
M(Mg(NO₃)₂) = Ar(Mg) + 2Ar(N) + 6Ar(O) · g/mol.
M(Mg(NO₃)₂) = 24.3 + 2·14 + 6·16 · g/mol.
M(Mg(NO₃)₂) = 148.3 g/mol; molar mass.
m(Mg(NO₃)₂) = n(Mg(NO₃)₂) · M(Mg(NO₃)₂).
m(Mg(NO₃)₂) = 0.0531 mol · 148.3 g/mol.
m(Mg(NO₃)₂) = 7.84; mass of magnesium nitrate.
There are a lot of empty space between the particles
Answer:
Evaporation is the method of separating a solid (solute) from a homogeneous solution.
in this method, the solution is heated until the solvent gets evaporated in the form of vapor and the solute is left behind as residue.
Hello!
The fission of an atom that has a large atomic number can be induced by bombarding the atom with neutrons.
Nuclear fission occurs when a heavy nucleus divides into two or more lighter nuclei. This reaction is induced by the bombarding of neutrons into the nucleus, making it unstable (like throwing an orange to a perfectly arranged orange pyramid at the supermarket). The unstable nucleus breaks down into lighter elements, releasing more neutrons which contribute to the chain reaction.
Have a nice day!