1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
4 years ago
8

To increase an amount by 3% what single multiplier would you use?

Mathematics
1 answer:
loris [4]4 years ago
3 0

3% is the decimal  0.03 .

To make a number 3% bigger, multiply it by  1.03 .

The ' 1 ' part is the amount that's already there, and
the ' .03 ' part is the amount to be added onto it.

You might be interested in
Please help me!<br> Find AC
oksian1 [2.3K]
We are asked to find the length of AC, which measures 7x. Using the segment addition postulate, we can add the two given expressions for AB and BC and make it equal to the expression for AC. 
AB + BC=AC
5x+1+15=7x
5x+16=7x
16=2x
x=8
We've found the value of x, but we aren't done yet. We need to plug in the value we got for x into the expression for AC, which is 7x. Therefore, AC \Rightarrow7x\Rightarrow7(8)\Rightarrow\boxed{56}. Hope this helped and have a great day!
8 0
4 years ago
PLZZ ANSWER ILL GIVE YOU BRAINLYIST
Monica [59]

Answer:

29.4 (B)

Step-by-step explanation:

<u>First, get rid of parentheses by multiplying.</u>

5(3 1/5 + 2 4/5) = 16 + 14 = 30.

Subtract 0.6

30 - 0.6 = 29.4

4 0
3 years ago
kim needs to read 147-page book for class. she has one week to read it, and she plans to read an equal amount of pages each day.
kipiarov [429]
21 pages. you divide 147 by 7 and get 21 pages
7 0
3 years ago
Rene wants a job where she can work 8 hours a day plus a $20 bonus per day.
WITCHER [35]

Answer:

she needs to work 8 hours a day.

Step-by-step explanation:

8 hours for $8 is 64, add the $20 bonus makes $80 and some change

3 0
3 years ago
PLEASE HELP! WILL MARK BRAINLIEST!
makkiz [27]

Answer:

The maximum height a rider will experience is 55 feet.

Step-by-step explanation:

Let's start writing the function that defines the path of a seat on the new Ferris wheel. This function will depend of the variable ''t'' which is time.

X(t)=(x,y)

In which X(t) are the coordinates of the seat (the x - coordinate and the y - coordinate) that depend from time.

''x'' and ''y'' are functions that depend from the variable ''t''.

For this exercise :

X(t)=[-25sin(\frac{\pi}{30}t);-25cos(\frac{\pi}{30}t)+30]

In order to find the maximum height a rider will experience we will study the behaviour of the y - component from the function X(t).

The function to study is y(t)=-25cos(\frac{\pi}{30}t)+30

To find its maximum, we will derivate this function and equalize it to 0. Doing this, we will find the ''critical points'' from the function.

⇒ y(t)=-25cos(\frac{\pi}{30}t)+30  ⇒

y'(t)=\frac{5}{6}\pi sin(\frac{\pi}{30}t)

Now we equalize y'(t) to 0 ⇒

y'(t)=0 ⇒ \frac{5}{6}\pi sin(\frac{\pi}{30}t)=0

In this case it is easier to look for the values of ''t'' that verify :

sin(\frac{\pi}{30}t)=0

Now we need to find the values of ''t''. We know that :

sin(0)=0\\\\sin(\pi)=0\\sin(-\pi)=0

Therefore we can write the following equivalent equations :

\frac{\pi}{30}t=0 (I)

\frac{\pi}{30}t=\pi (II)

\frac{\pi}{30}t=-\pi (III)

From (I) we obtain t_{1}=0

From (II) we obtain t_{2}=30

And finally from (III) we obtain t_{3}=-30

We found the three critical points of y(t). To see if they are either maximum or minimum we will use the second derivative test. Let's calculate the second derivate of y(t) :

y'(t)=\frac{5}{6}\pi sin(\frac{\pi}{30}t) ⇒

y''(t)=\frac{\pi ^{2}}{36}cos(\frac{\pi }{30}t)

Now given that we have an arbitrary critical point ''t_{n}'' ⇒

If y''(t_{n})>0  then we will have a minimun at t_{n}

If y''(t_{n}) then we will have a maximum at t_{n}

Using the second derivative test with t_{1},t_{2} and t_{3} ⇒

y''(t_{1})=y''(0)=\frac{\pi ^{2}}{36} >0 ⇒ We have a minimum for t_{1}=0

y''(t_{2})=y''(30)=\frac{-\pi^{2}}{36} ⇒ We have a maximum for t_{2}=30

y''(t_{3})=y''(-30)=\frac{-\pi^{2}}{36} ⇒ We have a maximum for t_{3}=-30

The last step for this exercise will be to find the values of the maximums.

We can do this by replacing in the equation of y(t) the critical points t_{2} and t_{3} ⇒

y(t_{2})=y(30)=55

y(t_{3})=y(-30)=55

We found out that the maximum height a rider will experience is 55 feet.

3 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following is true regarding the sequence graphed below?
    11·1 answer
  • Which investment account can be used to save for post-secondary education? traditional IRA, 403(b), flexible spending account (f
    13·1 answer
  • What is the greatest common factor of 54x^3, 18x, 36x^2
    7·1 answer
  • What does 2+2+2+2+27+7=
    15·2 answers
  • What is my hourly pay if my bi-weekly gross is 1,986 dollars
    9·1 answer
  • NEED HELP ASAP!! WILL MARK BRAINLIEST TO THE RIGHT ANSWER!!
    5·1 answer
  • List two different combinations of coins, each with a value of 60% of a dollar
    10·1 answer
  • 8.92 kilograms equal how many decigrams​
    14·2 answers
  • Angle B measures 60. What is the measure of the angle that is complementary to angle B ?
    15·2 answers
  • Am I doing these correctly?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!