The stoichiometry of the reaction gives the molar ratio in which the reactants react with each other and the ratio in which products are formed.
The coefficients of the reactants in the reaction follow the stoichiometry
the balanced chemical equation for the reaction is as follows;
2C₃H₆(g) + 9O₂(g) ---> 6CO₂(g) + 6H₂O(l)
I am thinking the answer is B. I think this because Bohr had a model similar, but his was lacking the cloud of electrons. His just had electrons orbiting the nucleus.
I hope this is right!<span />
The top of a wave is called the wave crest.
Answer:
The correct answer is 0.25 moles NH₃
Explanation:
First, we need to know the chemical equation for NH₃ formation from H₂. The balanced chemical reaction involved in NH₃ obtention is the following:
N₂(g) + 3 H₂(g) → 2 NH₃(g)
According to this, 2 moles of NH₃ are formed from 3 moles of H₂. We can write that estequiometrical relation as: 2 moles NH₃/ 3 moles H₂.
From the problem, we have to calculate how many moles of NH₃ are produced from 0.37 moles H₂. So, we can simply multiply the number of moles of H₂ to obtain by the convertion factor:
0.37 moles H₂ x 2 moles NH₃/ 3 moles H₂= 0.246 moles NH₃ ≅ 0.25 moles NH₃
Thus, 0.25 moles of NH₃ will be obtained.