Answer : The metal used was iron (the specific heat capacity is
).
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of metal = ?
= specific heat of water = 
= mass of metal = 47.1 g
= mass of water = 120 g
= final temperature of water = 
= initial temperature of metal = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Form the value of specific heat of metal, we conclude that the metal used in this was iron.
Therefore, the metal used was iron (the specific heat capacity is
).
Since there are no given items, I will give a general answer. Energy....or the lack of it. Examples: Heat, electricity, force (when an item is moving and it impacts something, it heats up...friction is an example of this), etc
The correct answer to this question is this one:
find the energy of one photon:
<span>E=h*<span>c/λ
</span></span>
divide the energy given by the energy of one photon of that wavelength
What I've done so far is convert wave length to m and energy to j.
E photon = h * x / wave length
E = (6.626 x 10^-43)(3.00 x 10^8) / 587 ^ -9 = 3.38 x 10 ^18 J
3.38 x 10 ^18 J x 1000 kj / 1 j = 3.37 x 10 ^ 16 Kj
609 kJ/ 3.37 x 10 ^ 16 Kj = 1.81 x 10 ^ 16
E = (6.626 x 10^-34)(3.00 x 10^8) / 587 ^ -9 = 3.38 x 10 ^19 J
3.38 x 10 ^19 J x 1000 kj / 1 j = 3.37 x 10 ^ -16 Kj
609 kJ/ 3.37 x 10 ^ 16 Kj = 1.81 x 10 ^ 18 but the answer is 1.81 × 10^24 photons
3.38 x 10 ^-19 J
should be negative
then 3.38 x 10 ^18 J x 1kJ/1000 J
you're converting from J to kJ.. just like meters to kilometres, you wouldn't multiply you would divide