In order to measure the resistance in the circuit, we need to know the voltage V and the current I in the circuit, this way we can calculate the resistance using the formula:

In order to calculate the current, we can use an amperemeter that must be in series with the circuit, this way it will not affect the circuit.
And in order to calculate the voltage, we can use a voltmeter that must be in parallel with the resistance, this way it will not affect the circuit.
The correct option that shows an amperemeter in series and a voltmeter in parallel is the fourth option.
Answer:
A: The acceleration is 7.7 m/s up the inclined plane.
B: It will take the block 0.36 seconds to move 0.5 meters up along the inclined plane
Explanation:
Let us work with variables and set

As shown in the attached free body diagram, we choose our coordinates such that the x-axis is parallel to the inclined plane and the y-axis is perpendicular. We do this because it greatly simplifies our calculations.
Part A:
From the free body diagram we see that the total force along the x-axis is:

Now the force of friction is
where
is the normal force and from the diagram it is 
Thus
Therefore,

Substituting the value for
we get:

Now acceleration is simply

The negative sign indicates that the acceleration is directed up the incline.
Part B:

Which can be rearranged to solve for t:

Substitute the value of
and
and we get:
which is our answer.
Notice that in using the formula to calculate time we used the positive value of
, because for this formula absolute value is needed.
To solve this problem we will apply the linear motion kinematic equations. From the definition of the final velocity, as the sum between the initial velocity and the product between the acceleration (gravity) by time, we will find the final velocity. From the second law of kinematics, we will find the vertical position traveled.

Here,
v = Final velocity
= Initial velocity
g = Acceleration due to gravity
t = Time
At t = 4s, v = -30m/s (Downward)
Therefore the initial velocity will be


Now the position can be calculated as,

When it has the ground, y=0 and the time is t=4s,


Therefore the cliff was initially to 41.6m from the ground
D)sound waves the electromagnetic spectrum has to do with colors<span />