Answer:
The two dogs sitting here are already poor and ignorant
Answer:
The tension in string is found to be 188.06 N
Explanation:
For the vibrating string the fundamental frequency is given as:
f1 = v/2L
where,
f1 = fundamental frequency = 335 Hz
v = speed of wave
L = length of string = 28.5 cm = 0.285 m
Therefore,
v = f1 2L
v = (335 Hz)(2)(0.285)
v = 190.95 m/s
Now, for the tension:
v = √T/μ
v² = T/μ
T = v² μ
where,
T = Tension
v = speed = 190.95 m/s
μ = linear mass density of string = mass/L = 0.00147 kg/0.285 m = 5.15 x 10^-3 kg/m
Therefore,
T = (190.95 m/s)²(5.15 x 10^-3 kg/m)
<u>T = 188.06 N</u>
Answer:
The velocity of the light will be 1.0c only
Explanation:
The velocity of the light measured in the case given in question will be 1.0c only.
This is due to the fact that the velocity of light is never relative. The velocity of the light is maximum
The velocity of the light cannot be scaled down in no case
Thus, the velocity of the light remains as constant.
Hence, the velocity of the light measured will be 1.0c although the ships have relative velocity.