1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sineoko [7]
3 years ago
9

POSSIBLE POINTS: 1.92

Physics
1 answer:
gogolik [260]3 years ago
7 0

Answer:

jnfal4u4ryhfsbjls5

Explanation:

duehdakjweyedufkbshegygfr

You might be interested in
Determine the slit width that produces a diffraction pattern with the 2nd dark fringe at 6.2mm from the central fringe. The scre
Elanso [62]

Answer:

d= 0.242 mm

Explanation:

Slit width (d ) = ?

Screen distance ( D ) = 1.25 m

Wave length of light λ = 600 nm

Distance of n the dark fringe from centre

= n λ D / d

Here n = 2

so

6.2\times10^{-3}=\frac{2\times600\times10^{-9}}{d}

d=\frac{1500\times10^{-6}}{6.2}

d= 0.242 mm

4 0
3 years ago
Space scientists have a large test chamber from which all the air can be evacuated and in which they can create a horizontal uni
nexus9112 [7]

Answer:

the magnitude of the electric force on the projectile is 0.0335N

Explanation:

time of flight t = 2·V·sinθ/g

= (2 * 6.0m/s * sin35º) / 9.8m/s²

= 0.702 s

The body travels for this much time and cover horizontal displacement x from the point of lunch

So, use kinematic equation for horizontal motion

horizontal displacement

x = Vcosθ*t + ½at²

2.9 m = 6.0m/s * cos35º * 0.702s + ½a * (0.702s)²

a = -2.23 m/s²

This is the horizontal acceleration of the object.

Since the object is subject to only electric force in horizontal direction, this acceleration is due to electric force only

Therefore,the magnitude of the electric force on the projectile will be

F = m*|a|

= 0.015kg * 2.23m/s²

= 0.0335 N

Thus, the magnitude of the electric force on the projectile is 0.0335N

3 0
3 years ago
Read 2 more answers
true or false? short-wave heat radiation is given off by the earth when the earth absorbs long-wave radiation.
Greeley [361]

Answer:

Hope this helps u, pls mark me brainlist

Explanation:

The sun emits shortwave radiation because it is extremely hot and has a lot of energy to give off. Once in the Earth's atmosphere, clouds and the surface absorb the solar energy. The ground heats up and re-emits energy as longwave radiation in the form of infrared rays.

4 0
3 years ago
An industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is W/m². What is the rms
inn [45]

I think your question should be:

An industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is

S = 1.23*10^9 W/m^2

What is the rms value of (a) the electric field and

(b) the magnetic field in the electromagnetic wave emitted by the laser

Answer:

a) 6.81*10^5 N/c

b) 2.27*10^3 T

Explanation:

To find the RMS value of the electric field, let's use the formula:

E_r_m_s = sqrt*(S / CE_o)

Where

C = 3.00 * 10^-^8 m/s;

E_o = 8.85*10^-^1^2 C^2/N.m^2;

S = 1.23*10^9 W/m^2

Therefore

E_r_m_s = sqrt*{(1.239*10^9W/m^2) / [(3.00*10^8m/s)*(8.85*10^-^1^2C^2/N.m^2)]}

E_r_m_s= 6.81 *10^5N/c

b) to find the magnetic field in the electromagnetic wave emitted by the laser we use:

B_r_m_s = E_r_m_s / C;

= 6.81*10^5 N/c / 3*10^8m/s;

B_r_m_s = 2.27*10^3 T

8 0
4 years ago
Read 2 more answers
Two 0.40 kg soccer ball collide elastically in a head-on collision. The first ball starts at rest, and the second ball has a spe
yulyashka [42]

Explanation:

Mass of two soccer balls, m_1=m_2=0.4\ kg

Initial speed of first ball, u_1=0

Initial speed of second ball, u_2=3.5\ m/s

After the collision,

Final speed of the second ball, v_2=0

(a) The momentum remains conserved. Using the conservation of momentum to find it as :

m_1u_1+m_2u_2=m_1v_1+m_2v_2

v_1 is the final speed of the first ball

0.4\times 0+0.4\times 3.5=0.4v_1+0.4\times 0

0.4\times 3.5=0.4v_1

v_1=3.5\ m/s

(b) Let E_1 is the kinetic energy of the first ball before the collision. It is given by :

E_1=\dfrac{1}{2}mu_1^2

E_1=\dfrac{1}{2}\times 0.4\times 0

It is at rest, so, the kinetic energy of the first ball before the collision is 0.

(c) After the collision, the second ball comes to rest. So, the kinetic energy of the second ball after the collision is 0.

Hence, this is the required solution.

7 0
3 years ago
Read 2 more answers
Other questions:
  • During a camping trip, Sierra collected dry branches and broke them into smaller pieces. She then placed the sticks in a fire pi
    9·1 answer
  • The paper dielectric in a paper-and-foil capacitor is 0.0800 mm thick. Its dielectric constant is 2.50, and its dielectric stren
    14·1 answer
  • Two blocks can collide in a one-dimensional collision. The block on the left hass a mass of 0.40 kg and is initially moving to t
    6·2 answers
  • How do the properties of an electromagnetic wave change as a result of increasing the period of the wave?
    11·1 answer
  • Is nickel coin magnetic?
    12·2 answers
  • Humanity is faced by many challenges and problems.
    9·1 answer
  • A beam of light has a wavelength of 549nm in a material of refractive index 1.50. In a different material of refractive index 1.
    14·1 answer
  • Mbbnmzmzkdjhxhxndmfmfmckcjcjcncncngmgkgjcjcj
    15·2 answers
  • Склянка с воздухом закрыта «пробкой» из мыльной пены.
    9·1 answer
  • Sentence A: At the same time, teachers will benefit from teaching fewer students per semester and gaining more one-on-one time w
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!