B- Earth completes a full spin on its axis once every 24 hours.
Lithium atomic number = 3
Li atom has 3 protons,3 electrons.Then it has no charge.
So the charge of Li atom here is zero.
<u>Option b: 0 is the right answer.</u>
Answer:
Be yourself, be kind, cute, funny, and yeah
Explanation:
Answer:
The percent isotopic abundance of Ir-193 is 60.85 %
The percent isotopic abundance of Ir-191 is 39.15 %
Explanation:
we know there are two naturally occurring isotopes of iridium, Ir-191 and Ir-193
First of all we will set the fraction for both isotopes
X for the isotopes having mass 193
1-x for isotopes having mass 191
The average atomic mass is 192.217
we will use the following equation,
193x + 191(1-x) = 192.217
193x + 191 - 191x = 192.217
193x- 191x = 192.217 - 191
2x = 1.217
x= 1.217/2
x= 0.6085
0.6085 × 100 = 60.85 %
60.85% is abundance of Ir-193 because we solve the fraction x.
now we will calculate the abundance of Ir-191.
(1-x)
1-0.6085 =0.3915
0.3915× 100= 39.15 %
Answer:
We have to weigh 52.8 g of BaCl₂·2H₂O, add it to a 2.00 L flask and add water until reaching the final volume.
Explanation:
<em>Describe the preparation of 2.00 L of 0.108 M BaCl₂ from BaCl₂·2H₂O. (244.3 g/mol).</em>
Step 1: Calculate the moles of BaCl₂
We need to prepare 2.00 L of a solution that contains 0.108 moles of BaCl₂ per liter of solution.
2.00 L × 0.108 mol/L = 0.216 mol
Step 2: Calculate the moles of BaCl₂·2H₂O that contain 0.216 moles of BaCl₂
The molar ratio of BaCl₂·2H₂O to BaCl₂ is 1:1. The moles of BaCl₂·2H₂O required are 1/1 × 0.216 mol = 0.216 mol.
Step 3: Calculate the mass corresponding to 0.216 mol of BaCl₂·2H₂O
The molar mass of BaCl₂·2H₂O is 244.3 g/mol.
0.216 mol × 244.3 g/mol = 52.8 g
We have to weigh 52.8 g of BaCl₂·2H₂O, add it to a 2.00 L flask and add water until reaching the final volume.