Answer:
The amount of C2H4I2 produced is maximized if
-Adding C2H4 to the reaction mixture
-Decreasing the reaction volume
-Also can include: raising the reaction temperature
<u>Answer:</u> The
of the reaction at given temperature is -12.964 kJ/mol.
<u>Explanation:</u>
For the given chemical reaction:

The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

To calculate the Gibbs free energy of the reaction, we use the equation:

where,
= Gibbs' free energy of the reaction = ?
= Standard gibbs' free energy change of the reaction = 0 J (at equilibrium)
R = Gas constant = 
T = Temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 
Putting values in above equation, we get:

Hence, the
of the reaction at given temperature is -12.964 kJ/mol.
The law that states the volume and absolute temperature of a fixed quantity of gas are directly proportional under constant pressure conditions would be the Charles Law. It <span>is an experimental gas </span>law<span> that describes how gases tend to expand when heated. Hope this answers the question.</span>
Answer:
1 unit
Explanation:
It is expressed as a multiple of one-twelfth the mass of the carbon-12 atom, 1.992646547 × 10−23 gram, which is assigned an atomic mass of 12 units.
1/12 * 12 = 1. I think so.