Force = (mass) x (acceleration)
Mass = (force) / (acceleration)
There was 150N of force in one direction and 100N of 'force' in
the other direction. The net force on the object was (150 - 100) = 50N .
Acceleration = (change in speed) / (time for the change)
= (10 m/s) / (5s) = 2 m/s²
Mass = (net force) / (acceleration) = (50 N) / (2 m/s²) = 25 kilograms
Answer:Extreme pressure from burial, increasing temperature at depth, and a lot of time, can alter any rock type to form a metamorphic rock. If the newly formed metamorphic rock continues to heat, it can eventually melt and become molten (magma). When the molten rock cools it forms an igneous rock.
Explanation:
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
Answer:
10N/m
Explanation:
Using F=kx
F=mg
k=mg/x
k=0.1*10/0.1 (kg*m/s^2)/m
10N/m
I am fairly certain it's D. Good luck!