Answer:
Explanation: represends a=v
- <em><u>it can be safely concluded that an object moving in a circle at constant speed is indeed accelerating. It is accelerating because the direction of the velocity vector is changing.</u></em>
<h2><em><u>hope</u></em><em><u> it</u></em><em><u> helps</u></em><em><u>!</u></em></h2>
Answer:
The work done by friction was 
Explanation:
Given that,
Mass of car = 1000 kg
Initial speed of car =108 km/h =30 m/s
When the car is stop by brakes.
Then, final speed of car will be zero.
We need to calculate the work done by friction
Using formula of work done



Put the value of m and v



Hence, The work done by friction was 
Answer:
96%
Explanation
Let A the total area of the galaxy, is modeled as a disc:
A = πR^2 = π (25 kpc)^2
And let a be the area that astronomers are able to see:
a = πr^2 = π(5 kpc)^2
The percentage that can be seen is equal to 100 times the ratio of the areas, of the galaxy and the "visible" part:
P = 100 a/A = (5/25)^2 = 100/25 = 4%
Therefore, the percentage of the galaxy not included, i.e. not seen is:
(100-4)% = 96%
Answer:
The average net force on the truck is 375 Newtons.
Explanation:
Using Newton's 3rd equation of motion, we have :
×a×s
where, v = final velocity = 25 m/s
u = initial velocity = 20 m/s
a = acceleration
s = distance traveled = 300 m
Using these values in the above equation, we get acceleration = 0.375 m/
Using Newton's second law, we have:
F=m×a
where m = mass = 1000 kg
a= acceleration = 0.375 m/
Putting values we have F=375 N