Answer:
The same amount of energy is required to either stretch or compress the spring.
Explanation:
The amount of energy required to stretch or compress a spring is equal to the elastic potential energy stored by the spring:
where
k is the spring constant
is the stretch/compression of the spring
In the first case, the spring is stretched from x=0 to x=d, so
and the amount of energy required is
In the second case, the spring is compressed from x=0 to x=-d, so
and the amount of energy required is
so we see that the amount of energy required is the same.
Explanation:
It is given that,
A planet were discovered between the sun and Mercury, with a circular orbit of radius equal to 2/3 of the average orbit radius of Mercury.
Mass of the Sun,
Radius of Mercury's orbit,
Radius of discovered planet,
Let T is the orbital period of such a planet. Using Kepler's third law of planetary motion as :
T = 4135214.625 s
or
T = 47.86 days
So, the orbital period of such a planet is 47.86 days. Hence, this is the required solution.
The correct answer is (a.) Hydra. Hydra is not a dwarf planet, instead, it is the moon of the dwarf planet, Pluto. There are only four accepted dwarf planets by the International Astronomical Union which were the Haumea, Pluto, Eris, and Makemake.
Answer:
Q = 7272 Kilojoules.
Explanation:
<u>Given the following data;</u>
Mass = 2.0*101kg = 202kg
Initial temperature, T1 = 10°C
Final temperature, T2 = 90°C
We know that the specific heat capacity of iron = 450J/kg°C
*To find the quantity of heat*
Heat capacity is given by the formula;
Where;
- Q represents the heat capacity or quantity of heat.
- m represents the mass of an object.
- c represents the specific heat capacity of water.
- dt represents the change in temperature.
dt = T2 - T1
dt = 90 - 10
dt = 80°C
Substituting the values into the equation, we have;
Q = 7272KJ or 7272000 Joules.
I think it would be C: Sometimes true and sometimes false. It varies.
Hope this helped, have a great day! :D