Answer:
Explanation:
Given
Distance between source and receiver 
Sound Intensity 
Distance of of second observer 
Intensity varies as

using this





Well, I think it kinda depends on how long the "extended period" is.
If the extended period is a week, a month, or a few months,
then I'd call it a 'cold wave'.
If the extended period is like 100 years or more, then you're
starting to talk 'ice age'.
Answer:
because energy will be lost due to friction, sound, and heat (arguably similar to friction) and ENERGY MUST STAY THE SAME so it is IMPOSSIBLE for the ball to bounce higher than when dropped!
Answer:
v = 31.3 m / s
Explanation:
The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.
Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane
Highest point
Em₀ = U = m g y
Lowest point
= K = ½ m v²
As there is no friction, mechanical energy is conserved
Em₀ =
m g y = ½ m v²
v = √ 2 g y
Where we can use trigonometry to find and
sin 30 = y / L
y = L sin 30
Let's replace
v = RA (2 g L sin 30)
Let's calculate
v = RA (2 9.8 100.0 sin30)
v = 31.3 m / s