Answer:
5.619×10⁶ N
Explanation:
Applying,
F = kqq'/r²................... Equation 1
Where F = electrostatic force between the charges, k = coulomb's constant, q = first charge, q' = second charge, r = distance btween the charges
From the questiion,
Given: q = 2.5 C, q' = 2.5 C, r = 100 m
Constant: 8.99×10⁹ Nm²/C²
Substitute these values into equation 1
F = (2.5×2.5×8.99×10⁹)/100²
F = 56.19×10⁵
F = 5.619×10⁶ N
a₀). You know ...
-- the object is dropped from 5 meters
above the pavement;
-- it falls for 0.83 second.
a₁). Without being told, you assume ...
-- there is no air anyplace where the marshmallow travels,
so it free-falls, with no air resistance;
-- the event is happening on Earth,
where the acceleration of gravity is 9.81 m/s² .
b). You need to find how much LESS than 5 meters
the marshmallow falls in 0.83 second.
c). You can use whatever equations you like.
I'm going to use the equation for the distance an object falls in
' T ' seconds, in a place where the acceleration of gravity is ' G '.
d). To see how this all goes together for the solution, keep reading:
The distance that an object falls in ' T ' seconds
when it's dropped from rest is
(1/2 G) x (T²) .
On Earth, ' G ' is roughly 9.81 m/s², so in 0.83 seconds,
such an object would fall
(9.81 / 2) x (0.83)² = 3.38 meters .
It dropped from 5 meters above the pavement, but it
only fell 3.38 meters before something stopped it.
So it must have hit something that was
(5.00 - 3.38) = 1.62 meters
above the pavement. That's where the head of the unsuspecting
person was as he innocently walked by and got clobbered.
Answer: I don't know my dude
Explanation: