Given :
Initial speed , u = 0 m/s .
Final speed , v = 91 km/h = 25.28 m/s .
To Find :
a) Average acceleration .
b ) Assuming the motorcycle maintained a constant acceleration, how far is it from the traffic light after 3.3 s .
Solution :
a )
We know ,by equation of motion :

b)
Also , by equation of motion :

Hence , this is the required solution .
Answer:
20.62361 rad/s
489.81804 J
Explanation:
= Initial moment of inertia = 9.3 kgm²
= Final moment of inertia = 5.1 kgm²
= Initial angular speed = 1.8 rev/s
= Final angular speed
As the angular momentum of the system is conserved

The resulting angular speed of the platform is 20.62361 rad/s
Change in kinetic energy is given by

The change in kinetic energy of the system is 489.81804 J
As the work was done to move the weight in there was an increase in kinetic energy
Answer:
A. F=6.65*10^{-10}N
B. south - north
Explanation:
A) We use the Lorentz force
F = qv X B
|F| = qvB
to calculate the magnitude of the force we need the speed of the of the ball.

and by replacing in the formula for the magnitude of the force we have (taking into account the excess of electrons)

B)
b. south - north (by the rigth hand rule)
I hope this is usefull for you
regards
I think this is correct, but I am not entirely certain.
Find the force constant of the spring:
F = - KX
(0 - 62.4) = -K(0.172m)
-362.791 = -K
362.791 N/m = K
Find the work done in stretching the spring:
W = (1/2)KX
W = (1/2)(362.791)(0.172m)
W = 31.2 J
The forces of gravity between two objects are smaller when the objects are farther apart.