Answer:
To calculate anything - speed, acceleration, all that - we need <em>data</em>. The more data we have, and the more accurate that data is, the more accurate our calculations will be. To collect that data, we need to <em>measure </em>it somehow. To measure anything, we need tools and a method. Speed is a measure of distance over time, so we'll need tools for measuring <em>time </em>and <em>distance</em>, and a method for measuring each.
Conveniently, the lamp posts in this problem are equally spaced, and we can treat that spacing as our measuring stick. To measure speed, we'll need to bring time in somehow too, and that's where the stopwatch comes in. A good method might go like this:
- Press start on the stopwatch right as you pass a lamp post
- Each time you pass another lamp post, press the lap button on the stopwatch
- Press stop after however many lamp posts you'd like, making sure to hit stop right as you pass the last lamp post
- Record your data
- Calculate the time intervals for passing each lamp post using the lap data
- Calculate the average of all those invervals and divide by 40 m - this will give you an approximate average speed
Of course, you'll never find an *exact* amount, but the more data points you have, the better your approximation will become.
 
        
             
        
        
        
<span>The correct option is A. There are three basic type of solutions, these are: unsaturated, saturated and super saturated solution. An unsaturated solution is a solution that has the capacity to hold more solute at a particular temprature, it is a solutin that is not yet saturated with the solute [particles dissolve in it].</span>
        
                    
             
        
        
        
Answer:
0.9 N
Explanation:
The electric force acting on a charge is given by:

where
q is the magnitude of the charge
E is the strength of the electric field
In this problem, we have
 is the charge
 is the charge
 is the strength of the electric field
 is the strength of the electric field
Substituting into the equation, we find

 
        
             
        
        
        
You know from looking at the molecular formula<span> that one </span>molecule<span> of </span>H2SO4<span> contains 2 </span>atoms<span> of hydrogen, 1 atom of sulfur and 4 </span>atoms<span> of oxygen.</span>
        
             
        
        
        
You haven't told us what the passing percentage is on the exam, 
or what the passing percentage is for the semester, or any of that.