Answer:
3.25 × 10^7 m/s
Explanation:
Assuming the electrons start from rest, their final kinetic energy is equal to the electric potential energy lost while moving through the potential difference (ΔV)
Ek = 1/2 mv2 = qΔV .................. 1
Given that V is the electron speed in m/s
Charge of electron = 1.60217662 × 10-19 coulombs
Mass of electron = 9.109×10−31 kilograms
ΔV = 3.0kV = 3000V
Make V the subject of the formula in eqaution 1
V = sqr root 2qΔV/m
V = 2 × 1.60217662 × 10-19 × 3000 / 9.109×10−31 
V = 3.25 × 10^7 m/s
 
        
             
        
        
        
Displacement = 31 - 16 = +15 m
        
             
        
        
        
There is no change in ocean water temperature when it is from the ocean surface to a depth of 1 km. 
 
        
             
        
        
        
<span>it fairly is going to attain a speed of 24 m/s in a 2d, yet between t = 0 and t = a million, it fairly is not any longer vacationing at that speed, yet at slower speeds. it fairly is 12 meters. ?D = [ ( a?T^2 + 2?Tv_i ) ] / 2 the place: ?D = displacement a = acceleration ?T = elapsed time v_i = preliminary speed ?D = [ ( 24m/s^2 • 1s • 1s + 2 • 1s • 0m/s ) ] / 2 ?D = 24 / 2 ?D = 12m</span>
        
                    
             
        
        
        
If you drop a 50 gram piece of metal that has a temperature of 110°Celsius into 1000 grams of water at 25°Celsius, <span>D.)The water and the metal’s temperature will reach the same temperature. In any system undergoing heat transfer, the objects involved will eventually reach the same temperature, signifying thermal equilibrium.</span>