A transformer is an electrical device that transfers energy between two or more circuits through electromagnetic induction. Transformers are mainly used to increase or decrease voltage in power lines or electric power applications. So your answer would be D. transformer
We have that for the Question, it can be said that the amount by which the length of the stack decreases is
From the question we are told
A copper (<em>Young's modulus </em>1.1 x 1011 N/m2) cylinder and a brass (Young's modulus 9.0 x 1010 N/m2) cylinder are stacked end to end, as in the drawing. Each <em>cylinder </em>has a radius of 0.24 cm.
A compressive force of F = 7900 N is applied to the right end of the brass cylinder. Find the amount by which the length of the stack <em>decreases</em>.
Generally the equation for <em>copper </em>cylinder is mathematically given as



Generally the equation for brass<em> </em>cylinder is mathematically given as


Therefore Total change in length


For more information on this visit
brainly.com/question/23379286
Explanation:
Start with what you know and list your knowns and unknowns
F = ma
F= 3N
m = 6kg
a =?
3N = 6kg x a
solve for a
3N / 6kg = a
Solve this using Olm's law, which relates current (C), voltage (V), and resistance (R). Olm's law says:

We are told that voltage, V = 12V, and resistance, R = 4.8 <span>Ω. Plug these values into the equation and solve for current:
</span>

<span>-----
Answer: Current = 2.5 Amperes</span>
In this case, you need the formula below where:
F = force
k = coulombs constant 8.99 x10^{9} N.m^{2} . C^{-2}
q1 = electric charge 1
q2 = electric charge 2
r = the distance between the charges

pls note: make sure your units are correct (in meters etc, not fm (<em>femto-meters</em>)).
Curiously, this question doesn't tell you what atom you are next to the nucleus of. Different numbers of protons in the nucleus of the atom will make for vastly different forces in your answer...