<u>Answer:</u> The
of the reaction at given temperature is -12.964 kJ/mol.
<u>Explanation:</u>
For the given chemical reaction:

The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

To calculate the Gibbs free energy of the reaction, we use the equation:

where,
= Gibbs' free energy of the reaction = ?
= Standard gibbs' free energy change of the reaction = 0 J (at equilibrium)
R = Gas constant = 
T = Temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 
Putting values in above equation, we get:

Hence, the
of the reaction at given temperature is -12.964 kJ/mol.
Answer:
Cells are extremely small.
Explanation:
As Mendel describes in this story, cells are so small they cannot normally be seen with the naked eye. ... The total organism remains the same throughout this process, and (usually) has a longer time on earth than any one of its cells.