Answer :
(A) The rate expression will be:
![Rate=-\frac{1}{2}\frac{d[HBr]}{dt}=+\frac{d[H_2]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
(B) The average rate of the reaction during this time interval is, 0.00176 M/s
(C) The amount of Br₂ (in moles) formed is, 0.0396 mol
Explanation :
Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The given rate of reaction is,

The expression for rate of reaction :
![\text{Rate of disappearance of }HBr=-\frac{1}{2}\frac{d[HBr]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DHBr%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }H_2=+\frac{d[H_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DH_2%3D%2B%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D)
![\text{Rate of formation of }Br_2=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DBr_2%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
<u>Part A:</u>
The rate expression will be:
![Rate=-\frac{1}{2}\frac{d[HBr]}{dt}=+\frac{d[H_2]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
<u>Part B:</u>
![\text{Average rate}=-\frac{1}{2}\frac{d[HBr]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20rate%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D)


The average rate of the reaction during this time interval is, 0.00176 M/s
<u>Part C:</u>
As we are given that the volume of the reaction vessel is 1.50 L.
![\frac{d[Br_2]}{dt}=0.00176M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D0.00176M%2Fs)
![\frac{d[Br_2]}{15.0s}=0.00176M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7B15.0s%7D%3D0.00176M%2Fs)
![[Br_2]=0.00176M/s\times 15.0s](https://tex.z-dn.net/?f=%5BBr_2%5D%3D0.00176M%2Fs%5Ctimes%2015.0s)
![[Br_2]=0.0264M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D0.0264M)
Now we have to determine the amount of Br₂ (in moles).



The amount of Br₂ (in moles) formed is, 0.0396 mol
The energy it plays is heat energy ahahha an
Water vapor
Its still water(H2O)
Just in the gas form
Answer : The correct option is, (C) 1.7
Explanation :
First we have to calculate the moles of
and
.


The balanced chemical reaction will be:

0.01 mole of
dissociate to give 0.01 mole of
ion and 0.02 mole of
ion
and
0.03 mole of
dissociate to give 0.03 mole of
ion and 0.03 mole of
ion
That means,
0.02 moles of
ion neutralize by 0.02 moles of
ion.
The excess moles of
ion = 0.03 - 0.02 = 0.01 mole
Total volume of solution = 100 + 300 = 400 ml = 0.4 L
Now we have to calculate the concentration of
ion.


Now we have to calculate the pH of the solution.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


Therefore, the pH of the solution is, 1.7